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Abstract- This work is to study an infinite thermoelastic solid that is assumed to be homogeneous and isotropic is subjected to temperature 
and stress distributions. A cylindrical system of coordinates is used, in which the plane is that of the crack and the z-axis is normal to it at the 
centre. The corresponding set of the homogeneous thermoelastic equilibrium differential equation is solved by the Hankel transforms method. 
The mixed boundary conditions reduce the problem to the solution of two pairs of dual integral equations. The both dual integral equations for 
the thermal and thermoelastic parts are effectively reduced. We deduce, by using the inverse integral transform. These quantities of physical 
interest are given analytically and represented graphically. A numerical application is considered with some concluding results with discus-
sions. All the definite integrals involved were calculated using Romberg technique of numerical integration with the aid of a Fortran Program 
compiled with Visual Fortran v.6.1 on a Pentium-IV pc with processor speed 2GHz. 
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Introduction 
According to the theory of generalized thermoelasticity with one 
relaxation time, a modified law of heat conduction including both 
the heat flux and its time derivative replaces the conventional Fou-
rier’s law of heat conduction [1]. The hat equation associated with 
this theory is hyperbolic, eliminating automatically the paradox of 
infinite speeds of propagation inherent in previous uncoupled and 
the coupled theories of thermoelasticity. Such a theory was extend-
ed to include both the effects of anisotropy and the presence of 
heat sources [5]. 
Cracking takes into account the existence of manufacturing defects 
such as inclusions or voids in the material of areas of damage from 
which cracks will propagate and learn to reach a size where the 
structure reaches the ruin. The linear fracture mechanics used to 
solve many practical problems of engineering. Such as the ruin of 
the structure, material selection, predicting the lifespan of struc-

tures and definition of criteria acceptance of defects. 
The failure of materials used in industry is almost always an ad-
verse event, and for several reasons; it can endanger lives, cause 
economic losses and hinder the production of goods and services. 
The interest of researchers was first raised several studies on the 
problems dealing with the homogeneous and linear axisymmetric 
elastic problems. Study of such failure mechanics helps to maintain 
the structural integrity due to cracks. The thermoelastic problem of 
an infinite elastic medium containing a penny-shaped crack [6].The 
both cases of the flux of heat being a constant and in the form of a 
Fourier- Bessel series expansion were considered. The problem 
was transformed to a Fredholm integral equation. 
The thermoelasticity problem for a half-space when the tempera-
ture is prescribed over a circular region. The corresponding dual 
integral equations were also reduce to a Fredholm integral and 
were treated with the aid of Cooke results. The stresses and the 
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displacements have been expressed in the form of double integrals 
which converge rapidly but have not been evaluated numerically 
[7]. 
The steady state thermal stresses in an elastic layer where a heat 
flux was imposed over a circular area discussed in[8]. The solution 
was achieved by the same the method mentioned above for the 
determination of the temperature field. A bidimensional analogous 
problem was studied by means of the Fourier transform method [9]. 
A similar study commissioned by the European Union concluded 
that billions of   ECU per year could be saved using fracture me-
chanics technology. 
 
Formulation of the problem 
The cylindrical system of coordinates will be used, in which the 
plane  , is the plane of the crack and the z-axis is normal to the 
crack at its centre. The crack occupies the region, and is subjected 
to prescribed distributions that vary with the radial distance  , where  
is the radius of the crack, as shown in figure table (1). The solid is 
assumed to be homogeneous, isotropic and elastic. Since the Ge-
ometry of the region is symmetric about the crack plane, the prob-
lem is reduced to a mixed boundary value problem of thermoelas-
ticity for the region, . All considered functions will depend on  and  
only. 
The displacement vector, thus, has the form  

 

where and represent the components of the displace-

ment vector,  in the radial and axial directions, respectively. 
The governing equations can be written as [10]The displacement 
vector, thus, has the form 

 

where and represent the components of the displace-

ment vector,  in the radial and axial directions, respectively. 
The governing equations can be written as [10] 

            (1) 

                     (2) 

where  and  are Lame’s elastic constant,  is a material 
constant. 

For an isotropic body, being the coefficient of 
linear thermal expansion. 
Taking the heat equation in the form: 

                                                                       (3) 

In the above equations,  is the absolute temperature. A refer-

ence temperature is assumed to be such that  

 and , the cubical dilatation, is given by the fol-
lowing relation [10]: 

                  

                              (4) 

is the two-dimensional Laplacian operator in a cylindrical coor-
dinates system that takes the form: 

 
The stress components expressed by the following constitutive 
relations that supplement the above equations:  

                                      (5)   

                                  (6) 

                                            (7) 
Making use of the following non-dimensional variables: 

, , , , 

 and ,  

where ,  is the speed of propagation of isothermal 

elastic waves given by: , in which is the den-

sity and is the material’s thermal conductivity. 
 Using the above non-dimensional variables, the governing 
equations take the following form (dropping the primes for conven-
ience): 

                (8) 

                          (9) 

                                                               (10)  
while the stress components (5)-(7) are reformulated to become: 
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                         (11)          

                     (12) 

                                               (13)  

In the above equations, note that  
Combining equations (8) and (9), regarding equations (4) and (10) 
to get: 

 

The boundary conditions for the problem at  may be taken 
as: 

,                                  (14) 

,                                       (15) 

,                                        (16) 

,                                           (17) 

,                               (18)                                        

where and  are known functions of temperature and 
mechanical stress, respectively. 
 
Analytical solution of the problem  

The Hankel transform with parameter  of a function  

denoted by is given by the relation[11] 

 

where is the Bessel function of the first kind of order
. 
The inverse Hankel transform is given by the relation[11], [12] 

 Similarly, 

          (19)                                       

Taking the Hankel transform with parameter  of both sides of 
equation (10) and using the operational relation of the Hankel 
transform [11] which is given in the equation (19), one obtain    

, where  
The solution of the above equation, which is bounded at infinity, 
can be written as, 

 

where is a parameter depending on  only. 

Due to symmetry, only the case where will be considered, 
accordingly. 

                                            (20)   
Taking the inverse Hankel transform of both sides of Eq. (20), 
gives: 

                  (21)                                         

Similarly, since  satisfies the same differential equation as ,

 can be written in the form. 

                      (22)                             

Where is a parameter depending on only. 
Applying the inverse Henkel transform for Eq. (22), its reads. We 
get  

   (23)                                         
Again applying the Hankel transform to both sides of Eq. (9) and 
regarding equation (20) and (22), the latter became: 

                            (24)  

The solutions of Eq. (24), for  , which is bounded at infinity 
is given by, 

                          (25) 

Where is a parameter depending on only. 
Applying the inverse Hankel transform to Eq. (25), we obtain 

       (26) 
Taking the Hankel transform of both sides of Eq. (4) and consider-
ing the Eq. (22) and (25). 
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After taking the inverse Hankel transform to the Eq. (27) is given 
by 

 

                                                  (28) 
The stress tensor components will take the forms: 

 

                                              (29) 

 

                                              (30) 
Substituting from equations (21), (28), (29) and (30) in to the 
boundary conditions (14)- (18) the following relations are obtained: 

,         (31) 

 

,                            (32) 

 

,    (33)                                     

,    (34)

,               (35) 

Since Eq.(32) is valid for all values of ,  is obtained in 
the form, 

            (36) 

Substituting for  from Eq. (36) and using Eq. (31), Eq. 
(33) reduces to, 

,    (37) 
 
Eqs. (31) and (34) are set of dual integral equations whose solu-

tion gives the unknown variable , also Eq.(35) and (37) are 
a set of a dual integral equations, the solution of which gives the 

unknown variable .The solution of the dual integral equa-
tions (31) and (34) is given by [2] 

  (38) 
The solution of the dual integral Eq. (35) and (37) has the form 

          

                  (39) 
Numerical Analysis: 
In what follow we shall take, 

, , ,  
Substituting these values into Eq. (38) and (39), and after some 
manipulations, 

                                  (40)

  

    (41) 
Substituting from Eq. (40) and (41) into relation (36), once ob-
tained, 
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Substituting the values of  from Eq. (33) into Eq. (14), 
We obtain, 
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For . 

               (44)                                                
In order to evaluate the integral on the right hand side of Eq. (44) 

for , 
The following into integral formulae of the Bessel’s functions [3], 
[4] are to be used. 

             (45) 

              (46) 
Using the integral formula (45), equation (44) becomes, 

For  

                                                   (47)                               

On substituting the values of ,  and  from 
Eqs. (40), (41) and (42) respectively, into Eq. (28), we obtain, 
 

                                         (48) 
Integrating the resulting relation with respect to b over the range 

to obtain for  

 

              (49) 
Equation (48) becomes, 

 (50)
             
Substituting from Eqs. (33)- (35) into Eq. (23)., 
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Integrating Eq. (44), over the range  given, 

 

   

    , for                          (52)          
Also using the following relation, 

         (53)                                                        
Substituting   Eq. (53) into Eq. (51) to get, 

for  

 

             (54) 
Table1- Thermal and elastic constants for copper. 
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The above evaluations are applied to copper material, whose 
constants are shown in table 1. 
The computations were performed for different values of z as 
shown in figure (1-3). All the definite integrals involved were cal-
culated using Romberg technique of numerical integration with 
variable step size; upon using a computer program compiled with 
Visual Fortran v.6.1 on a Pentium-IV pc with processor speed 
2.0GHZ. 
Figure (1) displays the distribution of the temperature T, versus 
the radial distance r, at value of of the axial distance  z. Note that 
the crack’s radius  r, is unity or is taken to be the unit of length in 
the problem so that  ,, and that the crack is symmetric with re-
spect to the z-plane . It is clear from the graph that T, has its max-
imum value at the initial of the crack, it begin to fall just near the 
crack edge, where it experiences sharp decreases (with maxi-
mum negative gradient at the crack’s circumference). Graph lines 
shows slope at crack ends according to z-value. These results 
obey physical reality for the behavior of copper as a polycrystal-
line solid. 
Figure (2) display a change of volume is attended by a change of 
the subject of the temperature while the effect of the deformation 
upon the temperature distribution is the subject of the theory of 
thermoelasticity. The solid particles radial displacement, u, shows 
and increase to reach its maximum magnitude just after the crack 
circumference. Moreover, U rises at a decreasing rate with in-

creasing z, we go vertically farther from the crack. Figure (3) dis-
play radial component distributions  has its maximum amplitude 
just at the crack edge and it reaches zero at infinity. Variation of z 
has a serious effect on the magnitudes of mechanical stresses. 
Such effect on the radial stress is in opposite manner to that on 
the axial one. From all figures we have to conclude that to propa-
gate it, the solid need to be subjected to an external stress 
(tensile, shear…). 
 
Conclusion 

 Analytical solutions based upon the integral Hankel trans-
forms for thermoelastic problem in solids have been devel-
oped and utilized. 

 Temperature, radial and axial distributions were estimated at 
different distances from the centre of the crack. 

 Crack dimensions are significant to elucidate the mechanical 
structure of the solid. 

 Cracks are stationary and external stresess is demanded to 
propagate such cracks. 

 Implement such solutions for a penny-shaped crack in a com-
posite solid. 

 Radial and axial stress distributions were evaluated as func-
tions of the distance from the crack centre.  
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