
Bioinfo Publications 42

THE INTELLIGENT INTRUSION DETECTION TOOL FOR BIOMETRIC TEMPLATE STORAGE

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012, pp.-42-48
Available online at http://www.bioinfo.in/contents.php?id=71

MAITHILI ARJUNWADKAR1* AND KULKARNI R.V.2

1MCA, Modern College of Engineering, Pune, India.
2SIBER, Kolhapur, India.
*Corresponding Author: Email- maithili.arjunwadkar@gmail.com

Received: January 19, 2012; Accepted: February 13, 2012

Abstract- While there are various advantages of biometric authentication process, it is vulnerable to attacks, which can decline its security.
To enhance the security of biometric process, Intrusion detection techniques are significantly useful. In this paper, we have designed intelli-
gent agent as knowledge based Biometric Template storage Intrusion Detection tool. This intelligent agent can be located on the Biometric
Template storage database. It performs intrusion detection using Operating System’s audit trail, and RDBMS audit trail. The system consists
of a user interface module, an inference engine, a knowledgebase of illegal transactions and audit trail of ORACLE database. Inference en-
gine is implemented using JESS which is a Java based Expert System
Keywords- Biometric template, intelligent agent, multiagent system,Java Expert System Shell(JESS), database audit_trail.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Introduction
Biometric authentication systems are used in order to verify the
claimed identity of a user based on his/her biometric characteris-
tics. A reliable identification system is a critical component in sev-
eral applications that contribute their services specifically to genu-
ine users. Examples of such applications include physical access
control to a secure facility, e-commerce, access to computer net-
works, attendance mark etc.
A Biometric sample, commonly referred to as a “corpus” is the
extraction of a unique set of data from an individual. Almost all
biometric systems perform in the same basic manner. The bio-
metric authentication systems are used either in centralized or
distributed architecture. They mostly differ by how the processing
steps for biometric authentication system are divided between
different machines. A biometric system is essentially a pattern
recognition system that operates by capturing a biometric image
from an individual, extracting a unique feature set from the ac-
quired data, and comparing this feature set against the template

set in the database. A system database consisting of biometric
templates must be created through a process of enrollment. The
user then comes back to the same system that he has enrolled on
and tries to authenticate through that stored template. The extract-
ed components are run through an algorithm and stored as a tem-
plate. Biometric Templates contain very sensitive information used
to identify people which are bound to them. It is the template that is
used to determine the user’s rights and privileges to access that
resource. Each individual’s reference template must be stored in
an accessible repository which can be compared to the user’s bio-
metric. It is commonly accepted that a biological template cannot
be reverse engineered to create a complete biometric input of a
user such as creating a complete fingerprint from the biometric
input. In this paper we consider attacks on the biometric templates
stored in the system database. Attacks on the template can lead to
the vulnerabilities like insertion of a fake template, modification of
an existing template, removal of an existing template, and replicate
the template which can be replayed to the matcher to gain unau-

Citation: Maithili Arjunwadkar and Kulkarni R.V. (2012) The Intelligent Intrusion Detection Tool for Biometric Template Storage. Journal of
Artificial Intelligence, ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012, pp.-42-48.

Copyright: Copyright©2012 Maithili Arjunwadkar and Kulkarni R.V. This is an open-access article distributed under the terms of the Crea-
tive Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Bioinfo Publications 43

thorized access. We have made an attempt to develop intelligent
tool which assists in detection of vulnerabilities.

In this paper we propose a Knowledge-based intrusion detec-
tion assistant for intrusions in biometric template storage.
The detailed architecture of assistant for intrusions in bio-
metric template storage and implementation of assistant is
discussed. In this method we define the rules to detect at-
tacks on biometric template storage and using back tracing,
one can find source of intrusion.

Overview of Concept
A system that stores biometric template centrally is far more sus-
ceptible to massive disclosure than storage on a single PC or smart
card, or device. One of the most potentially damaging attacks on a
biometric system is against the biometric templates stored in the
system database. The location of biometric storage is a key point in
the consideration of controls. The biometric template store can be
located remotely within a Central Repository, a Local Storage with-
in the Biometric Reader Device, or on a portable token such as
smart card. Each of these locations is appropriate for different
systems, depending on the requirements. The privacy risks grow
multifold for central storage locations. In this paper we consider
biometric template stored within a Central Repository. Central re-
positories allow users to enroll at a central location and be recog-
nized at any networked biometric device. Central repositories allow
for easy auditing of authentication attempts [1].

Fig.1- Vulnerabilities in a Biometric Storage Template [2]

According to common criteria of biometric evaluation methodology
supplement [3] it is particularly important to consider that attacks
can be done on the direct input and output of a biometric template.
The vulnerabilities in biometric storage are shown in (fig. 1). The
Attacks can be done by authorized or unauthorized users. The
users abuse of their rights and privileges to do unauthorized activi-
ties and to obtain unauthorized access. In this paper we consider
two main categories of users those are normal user and user with
DBA role that, intentionally or unintentionally damage the system
[4]. One of the most potentially damaging attacks on a biometric
system is against the biometric templates stored in the system
database. As an example, a fingerprint template copied from a
bank’s database may be used to search a criminal fingerprint data-
base or crosslink to person’s health records. The imposter can
access centrally stored template to avail unauthorized service
whereas a lawful user will face Denial of service. To avoid this,
smart cards are preferred. In that case, the template is stored in
write once mode and erased or destroyed if altered. When this

scenario is not an option, strong security controls or protection
schemes must protect the template. The intrusion detection is an
essential supplement of traditional security system. As per litera-
ture review [15], various Intrusion detection and prevention tech-
niques are used in network systems, computer systems, web sys-
tems etc. But this type of technique is not available in biometric
process. But detection of intrusion and prevention techniques to
avoid such type of intrusion has become of paramount importance.
This security system needs the robust automated auditing, intelli-
gent reporting mechanism and robust detection and prevention
techniques.
 Every large scale biometric solution requires a RDBMS for efficient
storage and access of data. A Biometric Template can be stored in
a table column as:

 RAW data type

 Simple Object data type

 XML data type

 Full Common Biometric Exchange File Format-compliant

(CBEFF) data type
In this paper we consider Biometric Template stored in the form of
RAW data type.
Create a table to store employee data along with their fingerprint
template

A security attack or intrusion can be defined like any action or set
of actions which can violate the security of a system and tries to
compromise the confidentiality. Intrusion detection is a general
term which refers to the ability of a computer system to analyze the
security-relevant events that violate security occurred in the past [5
-6].
Intrusion detection requires a number of security-relevant events
which are collected and recorded in order to be analyzed. The role
of an intrusion detection system (IDS) is to monitor system activi-
ties to detect malicious actions and to identify unauthorized and
offensive uses [7].
It offers a defense when system vulnerabilities are exploited and
does not require expensive equipments. The IDS is executed in
background. When it detects suspicious or illegal activities, it noti-
fies to the security administrator [8]. For detecting intrusive activi-
ties, IDS can use audit file data. In this paper we consider Distribut-
ed HOST-based IDS which are in charge of monitoring several
hosts. It performs intrusion detection using Operating System’s
audit trail, RDBMS audit trail or information from multiple monitored
hosts. In a distributed system, the audit data collection is ensured
by several audit mechanisms which require a comparison of the
audit records of the various components and a coordination of the
analysis of the different hosts. In a distributed environment, the
data collection and analysis can be done using a central repository,
or distributed repositories with several analyzers. But, coordination
between the various analyzers is necessary for producing system-

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

The Intelligent Intrusion Detection Tool for Biometric Template Storage

CREATE TABLE Employees
(name VARCHAR2(50),
employee_id VARCHAR2(10),
dept VARCHAR2(20),
fingerprint_template RAW(1024));

Bioinfo Publications 44

wide audit information. The heterogeneity of a distributed network
multiplies the vulnerabilities of the various systems, contrary to a
centralized system.
The concept of Distributed Artificial intelligence (DAI) was defined,
at the beginning of the Seventies, to find solutions to specific AI
problems. Traditional AI concept deliberates intelligence within a
single system. This involves some difficulties because of the need
for integrating, within a same base of knowledge, expertise, com-
petencies and knowledge of different individuals who, in reality,
communicate and collaborate in the realization of a common goal
[8]. The purpose of DAI is to extend the AI field in order to distribute
the intelligence among several agents not subject to a centralized
control. The multi-agent system is a system that consists of multi-
ple agents that can interact together to learn or to exchange experi-
ences jointly to take actions or to solve problems. The agent is a
program module that functions continuously in a particular environ-
ment. It is able to carry out activities in a flexible and intelligent
manner that is responsive to change in the environment (real or
virtual). An agent is able to learn from its experiences. Different
Agents deployed on different locations are shown in (fig.2).

Fig.2- Different Agents deployed on different locations.

This autonomous agent takes actions based on its built-in
knowledge and its past experiences. We consider the simple reflex
agent distinguish the input from their environment i.e. DBA audit
trail and interpret it to a state that matches the rules. This approach
consists in detecting intrusions exploiting well-known system vul-
nerabilities. It is based on the fact that any known attack produces
a specific trace in the audit trail or in the network data. It needs a
priori information about the attacks it is able to detect. An alarm is
raised when the trace of an attack is detected in the current audit
trail or network data [9]. This approach works as follows:

 Attacking scenarios are collected,

 These scenarios are translated into facts using some prede-

fined rules.

 Extracted knowledge is utilized to take some decision, an

alarm can be raised.

 Using backward chaining approach source of intrusion can

be found out.
-based method (expert systems)

which translates attacks that are collected through DBA audit trail
of ORACLE. The current data are compared with the predefined
rules. If a rule matches, knowledge is created and an alarm is
raised. The construction of these rules depends entirely on the
expertise of the security officer.
In this research we designed and developed one of the agents of
multi-agent system called Biometric Template storage Intrusion
Detection Assistant. Its customized dashboards deliver real-time

compliance status and produce clear, easy-to-read reports for audi-
tors and other stakeholders. Automatic security content updates
target specific vulnerabilities and are acquainted with unknown
exploits and take preventive action. This intelligent agent is located
on the Biometric Template storage database. And user can see
detail of illegal transaction like name of the user whose actions
were audited (USERNAME),operating system login username of
the user whose actions were audited (OS_USERNAME), client
host machine name (USERHOST), Numeric ID of each ORACLE
session (SESSIONID), Name of the object affected by action
(OBJ_NAME),creator of the object affected by the action(OWN-
ER), Timestamp of the creation of the audit trail entry in Coordinat-
ed Universal Time (UTC) zone (EXTENDED_TIMESTAMP) using
backward chaining approach.
The biometric template storage Intrusion detection assistant is
designed and implemented using JESS (Java Expert System
Shell). JESS architecture shown in (fig.3). Jess has been used to
develop a broad range of commercial software, including:

 Expert systems that evaluate insurance claims and mortgage

applications

 Agents that predict stock prices and buy and sell securities

 Network intrusion detectors and security auditors

 Design assistants that help mechanical engineers

 Smart network switches for telecommunications

 Servers to execute business rules

 Intelligent e-commerce sites

 Games

Fig.3- JESS architecture Diagram

The pattern matcher applies the rules in the rule-base to the facts
in working memory to construct the agenda. The execution engine
fires the rules from the agenda, which changes the contents of
working memory and restarts the cycle.
JESS is a clone of the popular expert system shell CLIPS, rewritten
entirely in Java which integrates Java Object manipulation with rule
based inference. It is a rule engine - a special kind of program that
very efficiently applies rules to data. A rule-based program can
have different rules, and JESS will continually apply them to data in
the form of a knowledge base (facts). Often the rules will represent
the heuristic knowledge of a human expert in some domain, and
the knowledge base will represent the state of an evolving situation
(an interview, an emergency). JESS supports both forward and
backward reasoning [10-11-12].

Maithili Arjunwadkar and Kulkarni R.V.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Bioinfo Publications 45

Proposed System
Architecture of Biometric Template storage Intrusion Detection
Assistant is shown in (fig.4). Our architecture consists of a user
interface module, an inference engine, a knowledgebase of illegal
transactions and audit trail of ORACLE database. Auditing is the
monitoring and recording of selected user database actions. It can
be based on individual actions, such as the type of SQL statement
executed, or on combinations of factors that can include user
name, object, time, and so on.

Fig.4- Architecture of Biometric Template storage Intrusion Detec-
tion Assistant
Security policies can trigger auditing when specified elements in
an Oracle database are accessed or altered, including the con-
tents within a specified object. The user interface module interacts
with users. If user wants to find source of intrusion then user can
select any illegal transaction, details of that transaction like, name
of the user whose action were audited (USERNAME), operating
system login username of the user whose actions were audited
(OS_USERNAME), client host machine name (USERHOST), Nu-
meric ID of each ORACLE session (SESSIONID), Name of the
object affected by action (OBJ_NAME), Timestamp of the creation
of the audit trail entry in Universal Time Coordinated (UTC) zone
(EXTENDED_TIMESTAMP) will display on the screen. It exhibits
five different tables which display information about DBA users,
and other users, count of attacks from each user, count of attacks
done from particular hosts and count of attacks by host who login
as DBA. It also displays different graphs which depict how many
times other users tried to insert a fake template, modify an existing
template, remove an existing template, and copy the template
which can be replayed to the matcher to gain unauthorized access
based upon expert opinion. The Audit records include information
such as the operation that was audited, the user performing the
operation, and the date and time of the operation. Audit records
can be stored in either a data dictionary table, called the database
audit trail. The database audit trail is a single table named
SYS.AUD$ in the SYS schema of each Oracle database's data
dictionary. Several predefined views are provided to help you use
the information in this table. The audit trail records can contain
different types of information, depending on the events audited
and the auditing options set. The information which is always in-
cluded in each audit trail record regarding particular audit action
is, the user name, session identifier, terminal identifier, name of
the schema object accessed, and the operation performed or at-
tempted so on. Database auditing is enabled and disabled by the
AUDIT_TRAIL initialization parameter in the database's initializa-
tion parameter file. The parameter can be set by altering system
using following parameters.

Audit_trail= DB
Enables database auditing and directs all audit records to the
database audit trail (SYS.AUD$), except for records that are al-
ways written to the operating system audit trail.
Scope=SPFILE
uses the SCOPE clause because the database instance had been
started using a server parameter file (SPFILE). Starting the data-
base with a server parameter file is the preferred way of starting a
database instance.
To control the Oracle auditing subsystem using system commands
such as:

The AUDIT command only turns auditing options on; it does not
enable auditing as a whole. To turn auditing on and control wheth-
er Oracle generates audit records based on the audit options cur-
rently set, set the parameter AUDIT_TRAIL in the database's pa-
rameter file. The database audit trail is a single table
named SYS.AUD$ in the SYS schema of each Oracle database's
data dictionary. Several predefined views are provided to help you
use the information in this table, such as DBA_AUDIT_TRAIL. We
use the view DBA_AUDIT_TRAIL, which displays all audit trail
entries for suspicious database activities. The database is ac-
cessed using the JDBC (Java Database Connection). A suspicious
knowledge is stored as a form of acts and rules in a JESS
knowledge base. It is somewhat similar to a relational database,
especially in that the facts must have a specific structure. A rule-
based system maintains a collection of knowledge nuggets called
facts. This collection is known as the knowledge base. It is some-
what akin to a relational database, especially in that the facts must
have a specific structure. Similar to object-oriented languages,
objects have named fields in which data appears; unordered facts
offer this capability (although the fields are traditionally called
slots.) We use unordered facts because they are structured in
nature. We collect suspicious data from DBA_AUDIT_TRAIL and
create different templates as per requirement. In our implementa-
tion, the suspicious data model has following template definitions.

We fired SQL query on DBA_AUDIT_TRAIL and
DBA_ROLE_PRIVS. The result set is asserted into facts. In addi-
tion to the facts, rules are defined. We design different rules to
find out illegal transactions. The knowledge is represented as the
following rule.
The above rule says that if the action name is insert, then modify
action message and increase insert count and new value asserts

The Intelligent Intrusion Detection Tool for Biometric Template Storage

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Audit_trail=DB Scope=SPFILE

AUDIT SELECT,INSERT,UPDATE,DELETE ON

<object_name>

BY ACCESS WHENEVER SUCCESSFUL;

(deftemplate Trans
(slot actmessage)
(slot action_name)
(slot username)
(slot userhost)
(slot timestamp)
…………………)

Bioinfo Publications 46

into facts. The Defrule can search knowledge base to find rela-
tionships between facts, and rules can take actions based on the
contents of one or more facts. A JESS rule is something like if…
then statement in a procedural language, but it is not used in a
procedural way. While if…then statements are executed at a spe-
cific time and in a specific order, according to how the program-
mer writes those, JESS rules are executed whenever their if parts
(their left-hand-sides or LHSs) are satisfied, given only that the
rule engine is running. This makes JESS rules less deterministic
than a typical procedural program. Rules are defined in JESS
using the Defrule construct.
The following is the JESS language representation of the above
rule.

Similarly we defined rules for suspicious transactions like modify,
remove and copy the biometric template storage. In a backwards
chaining system, rules are still if..then statements, but the engine
seeks steps to activate rules whose preconditions are not met.
This behavior is often called "goal seeking". JESS supports both
forward and backward chaining. In this paper, we use back tracing
for postmortem of the intrusion to find source of intrusion. We use
Defquery construct for back tracing, which displays detail
knowledge about OS username, username, object name, owner
of object, time stamp, session-id and so on. The Defquery con-
struct lets you create a special kind of rule with no right-hand-side.
While rules act spontaneously, queries are used to search the
knowledge base under direct program control. A rule is activated
once for each matching set of facts, while a query gives you a
java.util.Iterator of all the matches. It can be convenient to use
queries as triggers for backward chaining. For this to be useful,
Rete.run() must be called while the query is being evaluated, to
allow the backward chaining to occur. Facts generated by rules
fired during this run may appear as part of the query results. We
use Defquery as follows:

Similarly we backtrack for suspicious transactions like modify,
remove and copy done by DBA role on the biometric template
storage.

Result Screens
The (fig.5 and fig 6) show result screens as output of our system.
The Biometric Template Storage Intrusion Detection Assistant
which displays two tables namely User Intrusion which contains
suspicious activities of normal users and DBA intrusion which
contains suspicious activities of DBA. A text pane is used to dis-
play detail information of selected suspicious activity. Three ta-
bles which show top intruders, top suspicious hosts and top suspi-
cious DBA hosts. These tables are used to find out most suspi-
cious user or host and that knowledge is used for taking any pre-
ventive actions. One bar graph shows which transaction is done
repeatedly as suspicious activity by normal user while another
one that of DBA. User intrusion graph shows Insert transaction
tried at 9 times, Delete transaction tried at 19 times, Update trans-
action tried at 18 times, Delete transaction tried at 20 times as
suspicious activity. DBA intrusion graph shows Insert transaction
tried at 6 times, Delete transaction tried at 7 times, Update trans-
action tried at 2 times, Delete transaction tried at 8 times as suspi-
cious activity. If user selects any row from normal user suspicious
activity table ,then details about name of the user whose action
where audited(USERNAME),operating system login username of
the user whose actions were audited(OS_USERNAME),client
host machine name (USERHOST), Numeric ID of each ORACLE
session (SESSIONID), Name of the object affected by action
(OBJ_NAME),Timestamp of the creation of the audit trail entry in
U n i v e r s a l T i m e C o o r d i n a t e d (U T C) z o n e
(EXTENDED_TIMESTAMP) will display on the screen. Fig. 5
shows detail information about selected row of user Intrusion table
which contains suspicious activity of normal user. Similarly if user
selects any row from DBA suspicious activity table ,then details
about name of the DBA whose action where audited
(USERNAME),operating system login username of the user
whose actions were audited(OS_USERNAME),client host ma-
chine name (USERHOST), Numeric ID of each ORACLE session
(SESSIONID), Name of the object affected by action
(OBJ_NAME), Timestamp of the creation of the audit trail entry in
U n i v e r s a l T i m e C o o r d i n a t e d (U T C) z o n e
(EXTENDED_TIMESTAMP) will display on the screen.fig. 6
shows detail information about selected row of DBA intrusion
table which contains suspicious activity of DBA.

Conclusion
In this paper, a simple implementation of knowledge based Bio-
metric Template storage Intrusion Detection assistant is por-
trayed. This intelligent agent is located on the Biometric Template
storage database. The intrusion detection is executed in back-
ground. When it detects suspicious or illegal activities, it notifies
the security administrator. For detecting intrusive activities, IDS
can use audit file data. In this paper we consider Distributed
HOST-based IDS which are in charge of monitoring several hosts.
It performs intrusion detection using Operating System’s audit
trail, RDBMS audit trail or information from multiple monitored
hosts. The system consists of a user interface module, an infer-
ence engine, a knowledgebase of illegal transactions and audit

Maithili Arjunwadkar and Kulkarni R.V.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

If action_name is Insert
Then Modify action message is Illegal Insertion AND
 Increase count of Insert actions AND
 Assert counted value into facts AND
 Assert username who did Insert action into facts AND
 Assert hostname from which Insert action take place
into facts

(defrule insert_rule
 ?r1<-(Trans (action_name ?*actname*)(username ?un)….)
 ?r2<-(Cnt_action(…))
 ?c1<-(accumulate(bind ?*cnt* 0) (bind ?*cnt*(+ ?*cnt* 1))
 ?*cnt* (Trans(action_name ?a&: (…..))))
 => (modify ?r1 (actmessage \"Illegal-Insertion\"))
 modify ?r2 (cnt ?*cnt*))
 (assert(Cnt_user(….)))
 (assert(Cnt_host(….))));

defquery search-by-mess (declare(variables ?act)) (Trans
(actmessage ?act)(action_name ?an)(username ?un)
(timestamp ?ts)……….)

Bioinfo Publications 47

trail of ORACLE database. Inference engine is implemented us-
ing JESS which is a Java Expert System Shell.

Future Work
In this paper we design and implement intelligent agent for bio-
metric template storage intrusion detection. In future the research
will expand to design other agents and preventive actions for
detected intrusion using different AI techniques.

References
[1] Risk And Control of Biometric Technologies A Security, Audit

And Control Primer at www.isaca.org.
[2] Ratha N., Connell J.H. and Bolle R.M. (2001) Audio and

Video-based Biometric Person Authentication, 223–228.
[3] Biometric Evaluation Methodology (BEM) (2002) suppliment

Produced by the common criteria Biometric evaluation meth-
odology working group.

[4] Anil K. Jain, Karthik Nandakumar and Abhishek Nagar (2008)
Journal on Advances in Signal Processing, 17.

[5] Ford W. (1994) Computer Communications Security: Princi-
ples, Standard Protocols and Techniques, Ed. Prentice Hall

PTR.
[6] Puketza M. Chung, Olsson R.A., Mukherjee B. (1997) IEEE

Software Journal, 43-51.
[7] Price K. (1998) Computer Sciences Computer, Purdue Uni-

versity.
[8] Houda Labiod, Karima Boudaoud, and Jacques Labetoulle,

Towards a new approach for intrusion detection with intelli-
gent agents”

[9] Ernest Friedman –Hill, JESS in Action.
[10] Ernest Friedman –Hill, Jess, The Expert System Shell for the

Java Platform” http://herzberg.ca.sandia.gov/jess.
[11] In-GookChun, In-Sik Hong (2001) IEEE, ISIE, Pusan,Korea.
[12] Maithili Arjunwadkar and Dr. R. V. Kulkarni (2010) Internation-

al Journal Of Computer Application, 3(6) 10-12.
[13] Maithili Arjunwadkar and Kulkarni R.V. (2010) Journal Of

Emerging Trends In Computing And Information Science,1(2),
117-120.

[14] Maithili Arjunwadkar and Kulkarni R.V. (2011) International
Journal of Computational Intelligence and Information Securi-
ty, 2(6), 50-60.

The Intelligent Intrusion Detection Tool for Biometric Template Storage

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

Fig.5- shows select any row from user Intrusion table and see the details of that transaction

Bioinfo Publications 48

Fig.6- Shows select any row from DBA Intrusion table and see the details of that transaction

Maithili Arjunwadkar and Kulkarni R.V.

Journal of Artificial Intelligence
ISSN: 2229–3965 & E-ISSN: 2229–3973, Volume 3, Issue 1, 2012

