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Introduction 

Guided by the existence of a multiple number of gates in each ion 
channel, it was recently expected that the activity equations of the 
neuronal dynamics obtain a number of renormalization terms, which 

play important role in the membranes that are small in size [1-3]. 

Neurons exhibit electrical action which is in nature known to be 
stochastic [4]. The external noise from the synapses is the main 
cause for stochastic. Still the interior noise, which participates to the 
gating probabilistic nature of the ion channel, also it can have im-
portant effects on the neuron's dynamic performance as displayed 
by the experimental studies [5,6] and by the numerical simulations 

or theoretical researches [7,8]. 

Neuronal dynamics under the effect of channel fluctuation is usually 
modeled with stochastic differential equations acquired by using 
some vanishing white-noise conditions into the fundamental deter-
ministic equations [7]. The dissipative stochastic mechanics (DSM 
neuron) based neuron model raised by Güler [3], is a special case 
of this. The DSM model has some forms of functionality named the 
renormalization terms, as well as some vanishing white-noise con-
ditions in the activity equations. The DSM model has been studied 
in numerical detail for its time independent input current's dynamics 
[1,3]; it was established that the corrections of renormalization in-
creases the changes in behavior from quiescence to spiking and 
from tonic firing to bursting. It was further established that the exist-
ence of renormalization corrections can result in faster temporal 
synchronization of the electric coupled consecutive discharges of 

two neuronal units [2,9]. 

In this paper, the DSM model is investigated in the situation of 
noise fluctuating input currents and concentrates on what role the 
renormalization terms and noise could have on the spiking rates 

and the spike coherence values. 

Modeling 

A brief summary on Hodgkin-Huxley (HH) and Hind marsh-Rose’s 
(HR) models are presented. Following that, the dissipative sto-
chastic mechanic (DSM) based neuron model will be elaborated 
that yields the dynamics of Hind marsh-Rose model in a determin-
istic condition on which the present study and experiments were 

conducted. 

The Hodgkin-Huxley Model 

In this model, section of nerve membrane had an electrical feature 
that can be sculptured by an equivalent circuit in such a way that 
current passing through the membrane has two major elements, 
the first one related with charging the membrane capacitance and 
the other one related to specific types of ion's movement through 
membrane. After that, the ionic current is also subdivided into 
three recognizable currents, sodium INa, potassium IK, and small 

leakage IL that are mostly conveyed by chloride ions. 

The differential equation that corresponds to the electrical circuit is 

shown below: 

  

 

where Cm is membrane capacitance, Vm is membrane potential, and 
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Iext is the current that externally applied. Iion is ionic current passing 
through the membrane and can be calculated from the next equa-
tion: 
 
 
 
where Ii Indicates every ionic element that having related conduct-

ance gi and reversal potential Ei. 

In the model of a giant squid axon, it has three kinds of currents (Ii): 
sodium INa, potassium IK, and leakage IL and that will give us this 

equation: 

 

 

The macroscopic gi (gNa, gK, gL) conductance starts from the united 
influence of a great amount of membrane microscopic ion channels. 
Ion channel can be considered as physical gates in a small number 
that manage the ions flow across the channel. When all the gates in 
an ion channel are in the permissive condition, ions can flow 

through the channel, and the channel is open. 

The Hind Marsh-Rose Model 

Fitz Hugh [10] and Nagumo [11] noticed separately in the Hodgkin-
Huxley equations, that in equivalent time-scales the membrane 
potential V(t) and sodium activation m(t) developed during an action 
potential, where the change of sodium inactivation h(t) and potassi-
um activation n(t) are similar, even though that's happened in slow-
er time scales. Consequently, now the simulation spiking response 

of a model can be represented in the following equations: 

 

 

where x indicates membrane potential and y denotes the recovery 
parameter. f1(x) is represented with cubic function, g1(x) with linear 
function, variables a and b are time constants and I(t) is the exter-

nal current applied or clamping as time function t. 

Hind marsh-Rose benefited from the Fitz Hugh-Nagumo model to 
enhance their model, which was a simplified version of the Hodgkin-
Huxley equations and substituted the linear function g(x) with a 
quadratic function so that the model in a long interspaces interval 
can accomplish rapid firing. [Fig-1] displays the diagram of null-cline 

of the model of Hind marsh-Rose in 1984 [12]. 

The HR model needed more than one equilibrium point to generate 
burst firing reaction. Basically, the state of Sub-threshold stable 
resting will have one point and one point inside the cycle of firing 
limit. To make the null-clines meet and bring additional points of 
equilibrium, a minor deformation was necessary. The controlling 
equations were altered to satisfy the requirements as shown in the 
following equations: 

 

 

 

where in the simple image of HR model f(x)=x3-3x2 and g(x)=1-5x2. 
Analysis of the phase plane of the granted equations is shown next 

page in [Fig-2]. 

The steady point in the [Fig-2] is the node A that corresponds to the 
neuron’s resting state. By using current pulse de-polarizing that is 
large enough,           null-cline is to be lowered so that the nodes A 

and B meets and vanishes. Ending firing is impossible by just termi-
nating the stimulus and the state will get out of the limit cycle only 
after applying a suitable hyper-polarizing pulse. Therefore, to termi-
nate the firing state of the model the term z was inserted. The varia-
ble that has been additive stands for a slowly changed current, 
changing the inserted current I to the effective input I - z. When the 
neuron is in a firing state, the z value is required to be raised. After 
this modification, the general set of equations for HR model is as 

shown below: 

 

 

Fig. 1- The 1984 HR model phase plane representation. Null-clines 
   (thin lines) and firing limit-cycle (thick line). The 
model has one equilibrium node [13]. 

Fig. 2- Hind marsh-Rose model phase plane description. The equi-
librium points A, B, and C are a stable node, an unstable saddle, 
and an unstable spiral, correspondingly, a humble form of f(x) is 

used in this equation as is indicated  null-cline shows [13]. 
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It should be noted that the f(x) and g(x) are removed and substitut-
ed by their equivalents. Where x indicates membrane potential, y 
denotes the recovery parameter, and z stands for the current adap-
tation with time constant r. Parameter z rises up through fire state 
and goes down through the non-fire state what made the model 
able to show bursting, chaotic bursting and post-inhibitory rebound 
are variables h and r. [12,13]. [Fig-3] display the analysis of phase 
plane of the equation below applying more complex form of f(x) as 

suggested in [12]. 

Fig. 3- Hind marsh-Rose model phase plane analysis with the use 
of more complex form of f(x). The equilibrium nodes A, B, and C are 
a stable node, an unstable saddle, and an unstable spiral, corre-

spondingly, unstable limit cycle is defined here [12]. 

The Dissipative Stochastic Mechanics (DSM) Neuron Model 

The DSM based neuron special formulation comes from a point of 
view that ion channels conformational fluctuation are subjected to 
two distinct types of noise. These two noise types were formulated 
as the intrinsic noise and topological noise. The first one is the in-
trinsic noise which starts from gating particles voltage dependent 
movement between inner and outer of the membrane surfaces 
which is stochastic in nature. Accordingly, gates open and close in 
a probabilistic manner, this is the average number, not the precise 

number. Open gates in the membrane are defined by the voltage.  

The second one is the topological noise that comes from multiple 
numbers of gates existences in the channels and contributes to the 
changes in the open gates topology, instead of the changes in the 

open gates number. 

Curiously, as gating particles during the dynamics do not follow a 
specific order for the occupation of the available closed gates, and 
the evacuation of the open gates, the membrane at two distinct 
times could have an equivalent number of gates being open but two 
various conductance values. The topological noise is contributed to 
the suspicion in the open channels numbers that occurs even if 
open gates numbers are precisely known. Therefore, in defining the 
dynamics of the voltage, all permits from the gates open topologies 
which should be well thought of. DSM neuron formula was devel-
oped based on Hind marsh-Rose model [12] and benefit from the 
Nelson’s stochastic mechanics [14], in the dissipation existence, to 
model the ion channel noise impacts on the membrane voltage 
dynamics. The topological noise impact on the neuron dynamics 
gets to be more important in membranes that are small in size. 
Accordingly, the DSM neuron functions like the Hind marsh-Rose 

model when the membrane size is too large. 

It was shown that the representation of intrinsic noise will get to be 
more important in small size membranes and it’s the same in case 
of fewer channels in DSM Neuron [1]. The intrinsic noise can be the 
source of spiking activity in quiet deterministic model and in large 
input current values bursting can be caused. In [Fig-4] and [Fig-5] 
the DSM Neuron dynamics in a small size membrane is demon-
strated. Notice that renormalization corrections are equal to zero so 
that the result is studied regardless of the topological noise influ-

ence. 

Fig. 4- Membrane voltage time series of the deterministic Hind 
marsh-Rose model applying the parameter values m = 1, a = 1, b = 
3, c = 1, d = 5, h = 4, r = 0.004 and xs = -1.6; for different constant 
inputs current values I, indicated in a parenthesis on the left of each 

plot [1]. 

Renormalization corrections are caused by the interaction between 
the topological and intrinsic noises. The existence of correction's 
parameters further increases the shift in behavior from quiescence 
to spiking and from tonic firing to bursting to a significant degree 
and with evidence to this; it causes the bursting activity to occur in a 
wider domain of input currents. Hence, in the existence of the cor-
rection terms, the spiking activity begins to occur at smaller input 
current values and the bursting activity is extended for higher input 
current values. The DSM neuron manner under the effect of correc-

tions is displayed next page in [Fig-6]. 
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Fig. 5- Time series of X when the DSM neuron is exposed just to 
the intrinsic noise applying the Hind marsh-Rose m = 0.25, a = 
0.25, b = 0.75, c = 0.25, d = 1.25, h = 1, r = 0.004 and Xs = -1.6 with 
the temperature T = 0.008. Schemes for different constant inputs 

current values 4 I (scaled by the factor of four) [1]. 

Fig. 6- Time series of X using the correction coefficients 
   with the temperature T = 0.008. 

The Hind marsh-Rose parameter are m = 1, a = 1, b = 3, c = 1, d = 
5, h = 4, r = 0.004 and xs = -1.6 [1]. 

Noise in Neuronal Information Processing 

Noise can enhance neuronal systems from signal transmission 
properties point of view under certain conditions. Sub-threshold 
oscillations in a neuron may have an important effect on the data 
coding in neurons when magnified by noise [15]. The perfect noise 
amount existence in the neuron system may have association with 

the input signal to enhance signal observation [16]. 

There are two types of noise; the internal and external which have 
been explained within the DSM neuron approach model in the third 
chapter. In this study the noise is a white Gaussian noise and con-
sidered to be one variable containing both the internal and the ex-

ternal noise. 

Gaussian noise is statistical noise that has its probability density 

function equal to that of the normal distribution, which is also known 

as the Gaussian distribution. In other words, the values that the 

noise can take on are Gaussian-distributed. A special case is white 

Gaussian noise, in which the values at any pairs of times 

are statistically independent (and uncorrelated). In applications, 

Gaussian noise is most commonly used as additive white noise to 

yield additive white Gaussian noise. 

Experiment and Results 

Rather than investigating the role of the correction coefficients sep-

arately, the standard values of epsilons (renormalization terms) has 

been taken as follows (Y_m = 0.1, Y_u = 0.5, Z_m = 0.001, and 

Z_u = 0.005) and scale them to zero to have a benchmark of vari-
ous sets of correction coefficients. We use the following periodic 

input current for the neuron: 

I = Ibase + gwn 

where Ibase indicates the current and gwn are Gaussian white noise. 

The model’s behavior is studied in the context of spiking rate and 

coherence, within the following ranges of the parameters: the time 

will be measured mS. voltage will be measured in mV. Noise vari-

ances values have been used between 0 and 2 and will be meas-

ured in µA/cm2 and Ibase values between 0.8 and 2.2 and will be 

measured in µA/cm2. The spiking rate when the Ibase values under 

0.8 is small and after the Ibase pass the values of 2.5 it become too 

large so in both cases we didn’t use that results in this thesis for 

comparison. Only the optimum result was taken in case of the low-

est and highest spiking rate. 

In the [Fig-7] the experiment was done by fixing the renormalization 

terms values and the noise variance values to zero. And by chang-

ing the Ibase which lead to the result shown in the [Fig-6]. When the 

value of Ibase is small there is no spiking action and after increasing 

the value of Ibase the neuron spiking rate start to increase in a rapid 

manner and the experiments have a low coherence. 

[Fig-8] the result is gotten by fixing the renormalization terms values 

to                       and the noise 

variance values to zero and when changing the Ibase the number of 

spikes in the experiments will increase in slow manner instead of 

the fast increasing as in the experiments shown in the [Fig-7] and 

the coherence will be high in this experiments contrary to the exper-

iments in the [Fig-7]. 

In the [Fig-9], the experiment was done by fixing the renormaliza-

tion terms values to zero and the noise variance values to 0.8. And 

by changing the Ibase which also lead to the result shown in the [Fig-

8]. When the value of Ibase is changing the neuron will start spiking 

from the beginning and the increase will be much better than the 

result gotten when the noise was zero as in [Fig-7]. The experi-

ments have a much better coherence compare to the result in the 

[Fig-7] but it still low. 

In the [Fig-10], the result is gotten by fixing the renormalization 

terms values to       t h e 

noise variance values to 0.8 and when changing the Ibase the num-
ber of spikes in the experiments will increase in much better and 

slower manner instead of the fast increasing as in the experiments 

done before that and the coherence will be higher in this experi-

ments contrary to the other experiments as in [Fig-7], [Fig-8], [Fig-

9].  
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Fig. 7- Voltage time series of the membrane deterministic using 
DSM model for the parameter values m=1, a=1, b=3, c=1, d=5, xs= 
-1.6, r=0.004, h=4, T=0.04 and the epsilon values and noise vari-
ances are set to be zero using various constant input current values 

as shown between the parentheses in the left side of the figure. 

Fig. 8- Voltage time series of the membrane deterministic using 
DSM model for the parameter values m=1, a=1, b=3, c=1, d=5, xs = 
-1.6, r = 0.004, h = 4, T = 0.01 and the epsilon values are 

     using various constant input 
current values as shown between the parentheses in the left side of 
the figure, and the noise variances is set to zero in all the experi-
ments. 

Fig. 9- Voltage time series of the membrane deterministic using 
DSM model for the parameter values m=1, a=1, b=3, c=1, d=5, xs = 
-1.6, r=0.004, h=4, T=0.04 and the epsilon values are equal to zero 
and the noise variances is 0.8 applying various constant input cur-
rent values as shown between the parentheses in the left side of 

the figure. 

Fig. 10- Voltage time series of the membrane deterministic using 
DSM model for the parameter values that are the same as in figure 
8 and the epsilon values are as in [Fig-7] applying various constant 
input current values as shown between the parentheses in the left 
side of the figure, and the noise variances is set to be equal to 0.8 

in all the experiments. 
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In the [Fig-11], the comparison done between the results done earli-
er which are shown in the [Fig-7], [Fig-8]. Leading to the result as 
shown below while using the renormalization terms in the first ex-
periments and will take the blue color in the figure and the second 
experiments will take the red color in the figure and the renormali-
zation terms are set to zero and the noise variance is set zero. The 

difference is very large between them. 

Fig. 11- Shows the difference between the two experiments. In the 
first experiment epsilon values are set to 
and     . In the second experiment, it is set to 0. Ibase as shown 

below in the figure, and the noise variances is set to zero. 

In the [Fig-12], the comparison done between the results done earli-
er which are shown in the [Fig-8], [Fig-10]. Leading to the result as 
shown below while using the renormalization terms in the first ex-
periments and will take the blue color in the figure and the second 
experiments will take the red color in the figure and the renormali-
zation terms are set to zero and the noise variance is set 0.8. The 
difference is very small between them compare to the other results 
in [Fig-7], [Fig-9] and the compare in [Fig-11]. As the noise variance 
increases the difference between the existence and the absence of 
renormalization terms will decrease but until the last experiments it 
didn’t vanish. 

Fig. 12- Shows the difference between the two experiments. In the 
first experiment epsilon values are set to 
and          . In the second experiment, it is set to 0. Ibase and the 

noise variances is set to (0.8). 

The renormalization terms was fixed to  
and              the Ibase is fixed to 0.8 and by changing the noise 

variance as [Fig-12], that led to the result as in the [Fig-13]. 

In the [Fig-14] the renormalization terms was fixed to 

    and the Ibase is fixed to 1.2 and by 
changing the noise variance as shown in the [Fig-13]. Which led to 
the result as in the [Fig-14] that shows that the renormalization 
terms have all the effect on the neuron around 0.5 and after the 
value of the noise variance pass the 0.5 limit the noise variance 
will have almost all the effect on the neuron and the renormaliza-

tion terms effect will be much smaller. 

Fig. 13- Shows the change in the number of spikes when the Ibase 
= 0.8, the epsilons value are set to their default values as in figure 

(8) and the noise variance is changed as in the figure. 

Fig. 14- Shows the change in the number of spikes when the Ibase 
= 1.2, the epsilons value is set to the default as in [Fig-8] and the 

noise variance is changed as in the figure. 

Fig. 15- Shows the change in the number of spikes when the Ibase 
= 2.2, the epsilons value is set to the default as in [Fig-8] and the 

noise variance is changed as in the figure. 
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In [Fig-15], the renormalization terms was fixed to  

             and the Ibase is fixed to 2.2 and by 

changing the noise variance as shown in the [Fig-14]. Which is lead 

to the result as in the [Fig-15] that shows that the renormalization 

terms have all the effect on the neuron around 0.5 and after the 

value of the noise variance pass the 0.5 limit the noise variance will 

have almost all the effect on the neuron and the renormalization 

terms effect will be much smaller and as the Ibase value increase 

with the noise variance the effect of the renormalization terms will 

be reduce in much faster manner and almost vanish. 

Conclusions 

In this paper, the DSM neuron model was investigated from a nu-

merical point of view when exposed to input current that is noisy 

and periodic in nature. The impacts of both the epsilon values and 

noise variances on the spiking rates and coherence were checked. 

Correction coefficients were used as an effective measure of renor-

malization corrections to the model. It should be considered that 

these renormalization corrections appear from the dilemma of being 

in doubt of how many open ion-channel numbers there are, even if 

we know the exact number of open gates. 

DSM model neurons appear to be more complex than other mod-

els. It shows quicker synchronizing between two DSM neurons 

[1,9], dynamics of the models under constant input currents [1] and 

in addition, its ability in detecting signals under noise varying and 

periodic input currents, that have been inspected during this study, 

are all the model benefits that deserve tolerating the complexity of 

it. Furthermore, it should be taken into consideration that this model 

is extremely capable of handling the small membrane sizes of the 

neurons. 

The experiments show that the epsilon values play an important 

role. The absence of the epsilon values makes the neuron generate 

spikes at the beginning of the experiment in slow manner and after 

a while the spikes generation will rise in a rapid way as shown in 

[Fig-8], [Fig-10]. 

The existence of the epsilon values when the noise variance is 

under 0.5 makes the neuron spiking smother from the beginning to 

the end of the experiment without any large differences between 

any two consecutive experiments and increases the neuron spiking 

stability and coherence as shown in [Fig-9], [Fig-10], [Fig-11]. The 

difference between the absence and existence of the epsilon values 

is also shown in a compared matter in the [Fig-11] and [Fig-12]. 

But the [Fig-13], [Fig-14], [Fig-15] shows that after the noise vari-

ances across the value 0.5, the effect of the epsilons values will be 

smaller, and the noise variances will have the most significant ef-

fects on the neuron spiking behavior and how it reacts. In addition, 

the noise variance almost takes all the roles played by the epsilon 

values from smothering the spike rates and coherence and increas-

ing the neuron stability. 

The existence of epsilon values increases the coherence in the 

neuron and the absence of the epsilon values reduces the coher-

ence of the neuron. As for the noise variance using it increases the 

coherence of the DSM neuron model. 

The results reveal that the neurons are extremely able to make a 

complicated and advantageous use of the channel noise in han-

dling signals. From a technological point of view, the study shows 

that the DSM model has promising potential for signal detection. 
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