
19
Copyright © 2011, Bioinfo Publications

Advances in Information Mining
ISSN: 0975–3265 & E-ISSN: 0975–9093, Vol. 3, Issue 1, 2011, pp-19-25
Available online at http://www.bioinfo.in/contents.php?id=32

AN SQL EXTENSION FOR LATENT SEMANTIC ANALYSIS

CRISTIAN BISCONTI 1, ANGELO CORALLO1, HOSSAM FARIS *, SALVATORE TOTARO1
1Incubatore Euro-Mediterraneo in “e-Business Management”, University of Salento, Lecce, Italy
* Corresponding Author: 7ossam@gmail.com

Received: April 14, 2011; Accepted: May 12, 2011

Abstract- Latent Semantic Analysis (LSA) is a powerful statistical theory and method for indexing, retrieving and
analyzing textual information. With the increased demand for more efficient databases and computing power, a lot of
research and work has focused on the practical side of the LSA. In this paper we introduce a design and
implementation of an SQL extension for LSA applications. The developed SQL extension for LSA is aimed to utilized as
an easy and simple interface for basic LSA and cosine similarity functions provided for indexing, searching and
retrieving large textual information stored in open source relational database management system like PostgresSQL.
Key words - Latent semantic indexing, SQL, Information retrieval

Introduction
Information retrieval and the integration of its tools in
relational database management systems have been
debated for a long time within the scientific community.
Many researchers mentioned number of application
fields for such an integration. Accordingly, many different
approaches and techniques have been proposed to face
these issues [1,2]. The increasing amount of available
unstructured textual information documents motivated
researchers to develop tools and design methodologies
to improve the efficiency and to automate information
retrieval systems [3, 4].
Almost all existing DBMS’s have a full-text search
system nowadays, but sometimes lexical matching
methods can be inaccurate when they are used to match
a user’s query. When users search for required
information, some documents which have the potential to
be relevant might be missed and not included in the
retrieved documents set only because the users are
using different words with almost identical or similar
meanings (synonyms). Naturally it would be better for
users to retrieve information on the basis of a conceptual
topic or meaning of a document rather than exact
matching.
LSA technique [5] tries to overcome these problems by
using a statistical based approach for indexing
documents. LSA is a statistical information retrieval
method that works with words that have similar
meanings or what is called synonyms. LSI is capable of
retrieving documents based on the concepts they contain
by using statistically derived conceptual indices instead
of individual words for retrieval. Thus querying using
search and retrieval systems based on LSI techniques
can return a set of documents as a result that are
semantically similar to the search query even if the
results don’t share a specific words the search query.
LSA constructs a term-document matrix to identify the
occurrence of unique terms within a collection of

documents, in this term-document matrix, each term is
represented by a row, and each document is
represented by a column. Each matrix cell (intersection
of row and column), holds the frequency of the
appearance of a given term in a given document. LSI
then applies local and global weight functions for terms
based on term frequencies to reflect the relative
importance of the term in each document in the
collection, in another words, the term frequency indicates
the weight of the term weight in a given document. In this
way a document is represented by a set of terms with
their frequencies ignoring the exact order of the terms in
the document.
LSA then performs a particular mathematical technique
called Singular Value Decomposition (SVD) on the
matrix to identify the structure in term usage and
recognize patterns in the relationships between the
terms used across the documents. SVD is a
mathematical mapping technique to reduce the number
of dimensions for a document’s vector in the term space
of the matrix, into a low dimensional space to make it
more useable and efficient.
As mentioned above, the use of LSA ensures the
retrieving of the original semantic structure of the
concept space. Accordingly it brings the advantages of
improving the performance with respect to synonymy
problem [6]. Indeed the traditional retrieval strategies are
not able to face the challenge of discovering documents
about the same topic that use a different vocabulary. In
LSA, same concepts are all likely to be represented by a
similar weighted combination of indexing variables.
Moreover, while a large number of polysemous words in
the query can reduce the precision of a search
significantly. The use of a reduced representation in LSA
makes it possible to remove some noise from the data.
The applications of LSA range from the information
retrieval to relevance feedback and information filtering.

AN-SQL extension for latent semantic analysis

20
Advances in Information Mining

ISSN: 0975–3265 & E-ISSN: 0975–9093, Vol. 3, Issue 1, 2011

LSA technique has been also applied to solve problems
related to the disambiguation of the word sense [7, 8],
the cross language retrieval [9,10] or to develop
semiautomatic tool for document classification [11].
These considerations bring the opportunity of developing
an integration of LSA in a DBMS [12] in order to provide
an easy access and simple to use SQL extension for
LSA applications over huge databases. This paper
presents the early results of the implemented integration,
specifically the attempt to integrate the main LSA
functions as SQL extension in PostgreSQL. This kind of
integration gives a chance of LSA technique application
as an autonomous additional means for information
retrieval through simple SQL commands. Since we
already have the availability of the full-text search
functionality in PostgreSQL DBMS, in the context of this
experimentation we can use both of them together.
This work is divided into three parts: The first part
introduces and presents suitable new data types
designed in this work for the purpose of programming the
LSA functions. The core implementation of LSA functions
is described in details in part two. Finally, The third part
discusses a real running example of using the
implemented LSA functions within SQL queries
processed over sampled data stored in an open source
DBMS. The purpose of this example is to show the
usefulness, powerful and the ease of use of these
functions. Moreover, it shows how simply this work can
apply the LSA techniques by using LSA functions
introduced in this paper on textual information stored in
DBMSs without the need of a third-party software.
The introduced extension was developed and
implemented in PostgreSQL DBMS, chosen for its level
of usage in the research and scientific communities as it
supports several important programming languages as
C.

Latent semantic data types
The integration of LSA technique in SQL language
standard as an extension requires defining new data
types different from the primitive data types already
present in PostgreSQL. These data types are designed
to store all the information related to a given document
needed for the LSA. In particular, for each document, we
need to know the number of lexemes, their position
within the document and their length. In the presented
case, this information is embedded in a structure written
in C language. We store the lexemes in a memory block
contiguous to its structure.

A. LSAVector data type
The new data type LSAVector is desgined so we can
store all the information related to a given document that
belongs to a specific Knowledge Base (KB). Basically, an
LSAVector is an ordered map that associates a value,
that is the number of occurrences of a specific word in a
specific document, with a key, that is the word that we
are considering. For example, if d1 is a document as
shown in Figure 1 in which there are only the terms
”alfa”, ”beta”, ”gamma” and ”delta” the s1 LSAVector

associated with d1 is a map with ”alfa”, ”beta”, ”gamma”,
”delta” keys and s1[”gamma”] = 3 indicates that in d1 the
term ”gamma” appears tree times as shown in Fig. (1).

B. LSAInfoKB data type
By grouping LSAVectors that represent some specific
documents, we obtain a KB. It is characterized as a set
of vocabularies coming from the combination of all keys
of the LSAVector’s involved. For example, consider that
s2 is an LSAVector associated with a document d2
reporting only the terms ”alfa” and ”gamma” (s2[”beta”] =
s2[”gamma”] = 0) and s1 and s2 are a KB with a
vocabulary made by ”alfa”, ”beta”, ”gamma” and ”delta”
terms. If we add an LSAVector s3 related to the
document d3, that contain the word ”alfa”, ”beta”,
”gamma”, ”iota”, the KB that we obtain as result of
combination has a vocabulary made by ”alfa”, ”beta”,
”gamma”, ”delta” and ”iota”. Each LSAVector is a KB, but
what we want is to keep separating these two types of
data.
KB is a type of data that has vocabulary information and
a frequency matrix, named term-document matrix. It is
designed as an array of arrays in which the term
appearance frequency in each document is stored, but
considering more dimensions. This means that if, for
example, we create a KB by grouping s1,s2 and s3
LSAVector’s associated with d1,d2 and d3 documents,
we obtain a KB K with a vocabulary and a frequency
matrix as the one presented in Fig. (2).
In order to proceed the latent semantic analysis we need
the U, S and V matrices, obtained from the SVD
decomposition of the term-document matrix. The amount
of information related to LSAInfoKB data type could be
too expensive in term of memory allocation consider a
LSAVector like a KB with only one document. Based on
these considerations, we created two different data
types: the one containing only the necessary information
of a single document and the other containing the
additional information related to the whole collection of
documents also, that is the matrices of the SVD
decomposition. For example considering a KB made by
our d1, d2 and d3 documents, we obtain a LSAInfoKB
type represented as shown in Fig. (3).

Implemented functions for latent semantic indexing
In order to operate with LSA analysis, we need specific
functions related to specific tasks. Although Electronic
document can exist in different formats, like doc, pdf, ppt
or html, we are only interested in the textual information
which is represented by the words stored in the files. For
this reason we decided to operate on simple text field. In
this section we introduce new four implemented
functions for LSA applications.

A. LSAVector toLSAVector (text doc)
First of all, we need a function able to translate a simple
text field into a LSAVector, that is the data type
introduced above. The number of components of this
vector is equal to the number of unique terms present in
the document; each component is associated to an

Cristian Bisconti, Angelo Corallo, Hossam Faris, Salvatore Totaro

21
Copyright © 2011, Bioinfo Publications

integer number that represents the term appearance
frequency in the document as shown in Fig. (4).

B. LSAVectorConcat and toLSAVector oveloading
When we group a huge amount of documents, this
means many LSAVectors, we obtain a KB. This KB
provides us the related vocabulary, that is the set of
words present at least one time in one document of the
KB, that enables the LSA analysis. An LSAVector may
have many representations based on the choosed
vocabulary. Then we need to overload the toLSAVector
function adding a new argument containing the
vocabulary associated to KB that we are considering.
The argument vocabulary is essentially another
LSAVector data type generated by the KB, since all the
information related to vocabulary is already contained
within its structure.
• LSAVector toLSAVector(text simpletext, LSAVector
vocabulary): this function builds an LSAVector by adding
terms in simple text.
• LSAVector toLSAVectorConcat(LSAVector v,
LSAVector vocabulary): This function builds a new
LSAVector with terms that are in vocabulary.

C. LSAInfoKB toLSAInfo(LSAVector v) and

LSAInfoKB toLSAIKB(LSAVector v))
In order to perform latent semantic analysis, we need to
get information that must be combined to the KB through
the application of a Singular Value Decomposition of the
term-document matrix. The term-document matrix is the
result of the grouping LSAVector elements based on the
same vocabulary. In order to compute this information
we created an aggregator function.
An aggregator function in SQL has the same data type
for argument op and for results res. This means that, to
obtain an LSAInfoKB as result of the aggregator function,
we need to aggregate LSAInfoKB. For this reason we
need a function to convert a LSAVector in
LSAInfoKnowlegdeBase. This function is LSAInfoKB
toLSAIKB(LSAVector v).
Now we can use the aggregator LSAInfoKB with a
LSAVector like argument casted before using toLSAKB
function. The general operation of this aggregator is only
an LSAVectorConcat function, while the final operation is
to calculate the three matrices needed for the LSA
Analisys. The U, S and V matrix allow us to make
similarity estimation in SQL statement.

D. double simCos(LSAVector di, LSAVector q,

LSAInfo KB)
One important operation in LSA analysis is represented
by the estimation of the similarity of a document di, that
belongs to KB, according to a given query q. To perform
this operation, we created the simCos function. This
function takes the lsavectors q and di and translates
them into the concept space using the following
equations:

௣ݍ = ܵିଵ்ܷݍ
݀௜௣ = ܵିଵ்ܷ݀௜

the simCos function uses the S and U matrices stored in
the KB LSAinfoMatrix (its third argument). The last step
to obtain the real similarity value is to compute:

௣݀௜௣்ݍ
In the same way we can estimate the similarity of a
document that does not belong to the KB. It is important
to point that this document might contain some terms
that are not present in the KB, so we could estimate the
portion of similarity due to the term (and concept)
appearing in our KB.

Power of LSA use in SQL environment: an example
Here we give an example with some applications
showing the simplicity of using the implementation of the
SQL extension we proposed in this research.
Considering the chance to use this implementation to
index and search, by natural language process, the
same kind of documents whose source could be web
site, ftp server, filesystem or samba server, we suppose
that a crawler takes .doc, .ppt, .pdf, .html files from these
sources, extract the textual information from the structure
of the documents and put all the terms within a simple
text field database. Moreover, we suppose we have a
simple table made as shown in Fig. (5):

• ID: is a numeric value used like primary key
• corpus: is the result of the textual information extraction
task accomplished by the crawler during documents
catching.
• fileName: stores the name and the path of the
document
• fileType: stores the type of the document catched by
the crawler
• sourceName: stores the name of the source where the
document has been catched by the crawler.
This simple table suggests us that we have more several
ways to perform a search on this document. Naturally we
can perform a full-text search on corpus field or on
fileName field. We can apply a filter on file type. But we
can also make a search based on semantic correlations.
We can use more different groups of documents to make
our KBs. There is no reason that suggest us to use all
records in the ”documents” table. By using LSA in SQL
environment we have more flexibility in our analysis, we
can consider different sets of documents as KB specifies
a WHERE condition in our SELECT statement. This
means that for all the considered subsets of documents
we can estimate similarity between a query and one or
more documents. For example we can consider a KB
made only of documents that are present on
”myUSBPen” resource, and then we can use SQL-query
like:

SELECT
LSAInfoKB(toLSAInfo(toLSAVector(corpus)))
FROM documents
WHERE sourceName= 'myUSBPen'

Choosing a KB, we can store it in a table for further
similarity querying or we can make direct similarity query

AN-SQL extension for latent semantic analysis

22
Advances in Information Mining

ISSN: 0975–3265 & E-ISSN: 0975–9093, Vol. 3, Issue 1, 2011

by using nested query. Suppose we have a query
captured by a simple text field from a client application
connected to our database. Obviously a query is exactly
a document that can be converted into a LSA vector and
used to make similarity estimation. In order to perform a
similarity query without a ”materialized” KB we can
submit a query like this to our database.

SELECT
 simCos (toLSAVector(corpus),
 toLSAVector('TextOfTheQuery'),
 KB)
FROM
 documents ,
 (SELECT LSAInfoMATRIX(toLSAVector(corpus))
 FROM docs) AS KB

Obviously, without stored KB, the query is more time-
expensive than a query based on a materialized KB. In
other words if we store our KB in a table defined like:

CREATE TABLE AS
 SELECT
 LSAInfoMATRIX(
 toLSAInfo(toLSAVector(corpus))
FROM documents

we can evaluate the similarity level with a query like this:

SELECT
 simCos (toLSAVector(corpus),
 toLSAVector('TextOfTheQuery'),
 KB. kb)
FROM documents , KB

In order to appreciate the potential of SQL-LSA fusion
we can consider the following example. Suppose that we
found a query made by a natural language that satisfies
a specific knowledge needed for our work. We can
constantly update the documents simply using a view
based on a semantic query as:

CREATE VIEW
 myPersonalKnowledgeCollectionOnElectric
AS simCos(toLSAVector(corpus),
 toLSAVector('TextOfTheQuery'),
 KB. kb)
FROM documents ,
(SELECT LSAInfoMATRIX(toLSAVector(corpus))
 FROM docs) AS KB

The semantic similarity obtained from the LSA analysis
can be used within a SQL command as DELETE or
INSERT, including a WHERE clause, in order to manage
our KB. Suppose we want to prune our KB, deleting or
moving the documents that have a level of semantic
similarity less than 0.2 with respect to a specific query.
This task can be done using the following SQL
statement:

DELETE FROM documents
WHERE id in
 SELECT
 id,
 simCos(toLSAVector(corpus),
 toLSAVector('TextOfTheQuery'),
 KB,
 kb) < 0 ,2
 FROM
 documents ,
 (select
 LSAInfoMATRIX(toLSAVector(corpus))
 from docs)as KB

Notice that in the query above, the deletion is based on a
LSA analysis executed on the fly.The potential showed
above is possible because our implementation is
considered as an extension of the SQL language.

Future work
Scalability is one of the most important issues in
designing software. A significant degradation in system's
performance must not happen when the database
becomes larger. In the scope of this research, a further
work is aimed to be done about the reliability and
efficiency of using the implemented SQL extension for
real and huge database of textual information, hopefully,
with maintained overall system performance.

Conclusion
In this research we proposed a design and
implementation of an SQL extension for latent semantic
analysis applications. We introduced the data types and
functions used to provide the basic LSA operations.
Furthermore some real examples were given in order to
show the simplicity of using the extension in SQL
queries.

References

[1] McHugh J., Abiteboul S., Goldman R., Quass
D., Widom J. (1997) Lore: A database
management system for semistructured data.
Technical report, Stanford University.

[2] Manber U., Wu S. (1993) GLIMPSE: A tool to
search through entire file systems. Technical
Report TR 93-34, Department of Computer
Science, University of AZ, Tuscon, Arizona,
http://webglimpse.org.

[3] Paris L.A.H., Tibbo H.R. (1998) Information
Processing and Management , 34(23):175190.

[4] Belkin N.J., Croft W.B. (1987) Annual Review
of Information Science and Technology, 22(9),
110145.

[5] Furnas G.W., Deerwester S., Dumais S.T.,
Landauer T.K., Harshman R.A., Streeter L.A.,
Lochbaum K.E. (1988) Information retrieval
using a singular value decomposition model of
latent semantic structure. International
Conference on Research and Development in
IR, New York.

Cristian Bisconti, Angelo Corallo, Hossam Faris, Salvatore Totaro

23
Copyright © 2011, Bioinfo Publications

[6] Deerwester S., Dumais S.T., Furnas G.W.,
Landauer T.K. and Harshman R.A., (1990)
Journal of the American Society for Information
Science, 41, 391-407.

[7] Gallant I. (1991) Neural Computation, 3.
[8] Schutze H. (1992) Dimensions of meaning, in

Proceedings of Supercomputing.
[9] Landauer T.K. and Littman M.L. (1990) Fully

automatic cross-language document retrieval
using latent semantic indexing, proceedings of
the Sixth Annual Conference of the UW Centre
for the New Oxford English Dictionary and Text
Research, UWCentre for the New OED and
Text Research, Waterloo Ontario.

[10] Young P.G. (1994) Cross-Language
Information Retrieval Using Latent Semantic
Indexing, Master’s thesis, The University of
Knoxville, TN.

[11] Ceglowski M., Coburn, A.,Cuadrado J. (2003)
Proceedings of the IEEE/WIC International
Conference on Web Intelligence (WI03),0-
7695-1932-6/03.

[12] Kumaran A. and Haritsa J.R. (2005)
SemEQUAL: Multilingual Semantic Matching in
Relational Systems, DASFAA.

[13] Rosario Barbara (2000) Latent Semantic
Indexing: An overview - INFOSYS 240 Spring
2000.

[14] April Kontostathis (2007) International
Conference on System Sciences, 2007. HICSS
2007. 73.

AN-SQL extension for latent semantic analysis

24
Advances in Information Mining

ISSN: 0975–3265 & E-ISSN: 0975–9093, Vol. 3, Issue 1, 2011

Fig. 1- d1 document and related LSAVector s1

Fig. 2- vocabulary and term-document matrix for the KB made by s1,s2 and s3 LSAVectors

 Fig. 3- term-document matrix and U,S and V matrix for the Knowlesdge Base made by s1,s2 and s3

LSAVectors

Fig. 4- function tolsavector applied to a simple text document

Cristian Bisconti, Angelo Corallo, Hossam Faris, Salvatore Totaro

25
Copyright © 2011, Bioinfo Publications

 Fig. 5- Table format

