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Abstract- Latent Semantic Analysis (LSA) is a powerful statistical theory and method for indexing, retrieving and 
analyzing textual information. With the increased demand for more efficient databases and computing power, a lot of 
research and work has focused on the practical side of the LSA. In this paper we introduce a design and 
implementation of an SQL extension for LSA applications. The developed SQL extension for LSA is aimed to utilized as 
an easy and simple interface for basic LSA and cosine similarity functions provided for indexing, searching and 
retrieving large textual information stored in open source relational database management system like PostgresSQL. 
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Introduction     
Information retrieval and the integration of its tools in 
relational database management systems have been 
debated for a long time within the scientific community. 
Many researchers mentioned number of application 
fields for such an integration. Accordingly, many different 
approaches and techniques have been proposed to face 
these issues [1,2]. The increasing amount of available 
unstructured textual information documents motivated 
researchers to develop tools and design methodologies 
to improve the efficiency and to automate information 
retrieval systems [3, 4].  
Almost all existing DBMS’s have a full-text search 
system nowadays, but sometimes lexical matching 
methods can be inaccurate when they are used to match 
a user’s query. When users search for required 
information, some documents which have the potential to 
be relevant might be missed and not included in the 
retrieved documents set only because the users are 
using different words with almost identical or similar 
meanings (synonyms). Naturally it would be better for 
users to retrieve information on the basis of a conceptual 
topic or meaning of a document rather than exact 
matching.  
LSA technique [5] tries to overcome these problems by 
using a statistical based approach for indexing 
documents. LSA is a statistical information retrieval 
method that works with words that have similar 
meanings or what is called synonyms. LSI is capable of 
retrieving documents based on the concepts they contain 
by using statistically derived conceptual indices instead 
of individual words for retrieval. Thus querying using 
search and retrieval systems based on LSI techniques 
can return a set of documents as a result that are 
semantically similar to the search query even if the 
results don’t share a specific words the search query. 
LSA constructs a term-document matrix to identify the 
occurrence of unique terms within a collection of  

 
documents, in this term-document matrix, each term is 
represented by a row, and each document is 
represented by a column. Each matrix cell (intersection 
of row and column), holds the frequency of the 
appearance of a given term in a given document. LSI 
then applies local and global weight functions for terms 
based on term frequencies to reflect the relative 
importance of the term in each document in the 
collection, in another words, the term frequency indicates 
the weight of the term weight in a given document. In this 
way a document is represented by a set of terms with 
their frequencies ignoring the exact order of the terms in 
the document. 
LSA then performs a particular mathematical technique 
called Singular Value Decomposition (SVD) on the 
matrix to identify the structure in term usage and 
recognize patterns in the relationships between the 
terms used across the documents. SVD is a 
mathematical mapping technique to reduce the number 
of dimensions for a document’s vector in the term space 
of the matrix, into a low dimensional space to make it 
more useable and efficient.  
As mentioned above, the use of LSA ensures the 
retrieving of the original semantic structure of the 
concept space. Accordingly it brings the advantages of 
improving the performance with respect to synonymy 
problem [6]. Indeed the traditional retrieval strategies are 
not able to face the challenge of discovering documents 
about the same topic that use a different vocabulary. In 
LSA, same concepts are all likely to be represented by a 
similar weighted combination of indexing variables. 
Moreover, while a large number of polysemous words in 
the query can reduce the precision of a search 
significantly. The use of a reduced representation in LSA 
makes it possible to remove some noise from the data. 
The applications of LSA range from the information 
retrieval to relevance feedback and information filtering. 
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LSA technique has been also applied to solve problems 
related to the disambiguation of the word sense [7, 8], 
the cross language retrieval [9,10] or to develop 
semiautomatic tool for document classification [11]. 
These considerations bring the opportunity of developing 
an integration of LSA in a DBMS [12] in order to provide 
an easy access and simple to use SQL extension for 
LSA applications over huge databases. This paper 
presents the early results of the implemented integration, 
specifically the attempt to integrate the main LSA 
functions as SQL extension in PostgreSQL. This kind of 
integration gives a chance of LSA technique application 
as an autonomous additional means for information 
retrieval through simple SQL commands. Since we 
already have the availability of the full-text search 
functionality in PostgreSQL DBMS, in the context of this 
experimentation we can use both of them together.  
This work is divided into three parts: The first part 
introduces and presents suitable new data types 
designed in this work for the purpose of programming the 
LSA functions. The core implementation of LSA functions 
is described in details in part two. Finally, The third part 
discusses a real running example of using the 
implemented LSA functions within SQL queries 
processed over sampled data stored in an open source 
DBMS. The purpose of this example is to show the 
usefulness, powerful and the ease of use of these 
functions. Moreover, it shows how simply this work can 
apply the LSA techniques by using LSA functions 
introduced in this paper on textual information stored in 
DBMSs without the need of a third-party software.  
The introduced extension was developed and 
implemented in PostgreSQL DBMS, chosen for its level 
of usage in the research and scientific communities as it 
supports several important programming languages as 
C.           
 
Latent semantic data types 
The integration of LSA technique in SQL language 
standard as an extension requires defining new data 
types different from the primitive data types already 
present in PostgreSQL. These data types are designed 
to store all the information related to a given document 
needed for the LSA. In particular, for each document, we 
need to know the number of lexemes, their position 
within the document and their length. In the presented 
case, this information is embedded in a structure written 
in C language. We store the lexemes in a memory block 
contiguous to its structure. 
 
A. LSAVector data type 
The new data type LSAVector is desgined so we can 
store all the information related to a given document that 
belongs to a specific Knowledge Base (KB). Basically, an 
LSAVector is an ordered map that associates a value, 
that is the number of occurrences of a specific word in a 
specific document, with a key, that is the word that we 
are considering. For example, if d1 is a document as 
shown in Figure 1 in which there are only the terms 
”alfa”, ”beta”, ”gamma” and ”delta” the s1 LSAVector 

associated with d1 is a map with ”alfa”, ”beta”, ”gamma”, 
”delta” keys and s1[”gamma”] = 3 indicates that in d1 the 
term ”gamma” appears tree times as shown in Fig. (1). 

 
B. LSAInfoKB data type 
By grouping LSAVectors that represent some specific 
documents, we obtain a KB. It is characterized as a set 
of vocabularies coming from the combination of all keys 
of the LSAVector’s involved. For example, consider that 
s2 is an LSAVector associated with a document d2 
reporting only the terms ”alfa” and ”gamma” ( s2[”beta”] = 
s2[”gamma”] = 0) and s1 and s2 are a KB with a 
vocabulary made by ”alfa”, ”beta”, ”gamma” and ”delta” 
terms. If we add an LSAVector s3 related to the 
document d3, that contain the word ”alfa”, ”beta”, 
”gamma”, ”iota”, the KB that we obtain as result of 
combination has a vocabulary made by ”alfa”, ”beta”, 
”gamma”, ”delta” and ”iota”. Each LSAVector is a KB, but 
what we want is to keep separating these two types of 
data.  
KB is a type of data that has vocabulary information and 
a frequency matrix, named term-document matrix. It is 
designed as an array of arrays in which the term 
appearance frequency in each document is stored, but 
considering more dimensions. This means that if, for 
example, we create a KB by grouping s1,s2 and s3 
LSAVector’s associated with d1,d2 and d3 documents, 
we obtain a KB K with a vocabulary and a frequency 
matrix as the one presented in Fig. (2). 
In order to proceed the latent semantic analysis we need 
the U, S and V matrices, obtained from the SVD 
decomposition of the term-document matrix. The amount 
of information related to LSAInfoKB data type could be 
too expensive in term of memory allocation consider a 
LSAVector like a KB with only one document. Based on 
these considerations, we created two different data 
types: the one containing only the necessary information 
of a single document and the other containing the 
additional information related to the whole collection of 
documents also, that is the matrices of the SVD 
decomposition. For example considering a KB made by 
our d1, d2 and d3 documents, we obtain a LSAInfoKB 
type represented as shown in Fig. (3). 

 
Implemented functions for latent semantic indexing 
In order to operate with LSA analysis, we need specific 
functions related to specific tasks. Although Electronic 
document can exist in different formats, like doc, pdf, ppt 
or html, we are only interested in the textual information 
which is represented by the words stored in the files. For 
this reason we decided to operate on simple text field. In 
this section we introduce new four implemented 
functions for LSA applications. 
 
A. LSAVector toLSAVector (text doc) 
First of all, we need a function able to translate a simple 
text field into a LSAVector, that is the data type 
introduced above. The number of components of this 
vector is equal to the number of unique terms present in 
the document; each component is associated to an 
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integer number that represents the term appearance 
frequency in the document as shown in Fig. (4).  
 
B. LSAVectorConcat and toLSAVector oveloading 
When we group a huge amount of documents, this 
means many LSAVectors, we obtain a KB. This KB 
provides us the related vocabulary, that is the set of 
words present at least one time in one document of the 
KB, that enables the LSA analysis. An LSAVector may 
have many representations based on the choosed 
vocabulary. Then we need to overload the toLSAVector 
function adding a new argument containing the 
vocabulary associated to KB that we are considering. 
The argument vocabulary is essentially another 
LSAVector data type generated by the KB, since all the 
information related to vocabulary is already contained 
within its structure.  
• LSAVector toLSAVector(text simpletext, LSAVector 
vocabulary): this function builds an LSAVector by adding 
terms in simple text.  
• LSAVector toLSAVectorConcat(LSAVector v, 
LSAVector vocabulary): This function builds a new 
LSAVector with terms that are in vocabulary. 
 
C. LSAInfoKB toLSAInfo(LSAVector v) and 

LSAInfoKB toLSAIKB(LSAVector v))    
In order to perform latent semantic analysis, we need to 
get information that must be combined to the KB through 
the application of a Singular Value Decomposition of the 
term-document matrix. The term-document matrix is the 
result of the grouping LSAVector elements based on the 
same vocabulary. In order to compute this information 
we created an aggregator function.  
An aggregator function in SQL has the same data type 
for argument op and for results res. This means that, to 
obtain an LSAInfoKB as result of the aggregator function, 
we need to aggregate LSAInfoKB. For this reason we 
need a function to convert a LSAVector in 
LSAInfoKnowlegdeBase. This function is LSAInfoKB 
toLSAIKB(LSAVector v).  
Now we can use the aggregator LSAInfoKB with a 
LSAVector like argument casted before using toLSAKB 
function. The general operation of this aggregator is only 
an LSAVectorConcat function, while the final operation is 
to calculate the three matrices needed for the LSA 
Analisys. The U, S and V matrix allow us to make 
similarity estimation in SQL statement. 
 
D. double simCos(LSAVector di, LSAVector q, 

LSAInfo KB) 
One important operation in LSA analysis is represented 
by the estimation of the similarity of a document di, that 
belongs to KB, according to a given query q. To perform 
this operation, we created the simCos function. This 
function takes the lsavectors q and di and translates 
them into the concept space using the following 
equations: 

௣ݍ = ܵିଵ்ܷݍ 
݀௜௣ = ܵିଵ்ܷ݀௜ 

 

the simCos function uses the S and U matrices stored in 
the KB LSAinfoMatrix (its third argument). The last step 
to obtain the real similarity value is to compute: 

௣݀௜௣்ݍ  
In the same way we can estimate the similarity of a 
document that does not belong to the KB. It is important 
to point that this document might contain some terms 
that are not present in the KB, so we could estimate the 
portion of similarity due to the term (and concept) 
appearing in our KB. 
 
Power of LSA use in SQL environment: an example   
Here we give an example with some applications 
showing the simplicity of using the implementation of the 
SQL extension we proposed in this research. 
Considering the chance to use this implementation to 
index and search, by natural language process, the 
same kind of documents whose source could be web 
site, ftp server, filesystem or samba server, we suppose 
that a crawler takes .doc, .ppt, .pdf, .html files from these 
sources, extract the textual information from the structure 
of the documents and put all the terms within a simple 
text field database. Moreover, we suppose we have a 
simple table made as shown in Fig. (5): 
 
• ID: is a numeric value used like primary key  
• corpus: is the result of the textual information extraction 
task accomplished by the crawler during documents 
catching. 
• fileName: stores the name and the path of the 
document  
• fileType: stores the type of the document catched by 
the crawler  
• sourceName: stores the name of the source where the 
document has been catched by the crawler. 
This simple table suggests us that we have more several 
ways to perform a search on this document. Naturally we 
can perform a full-text search on corpus field or on 
fileName field. We can apply a filter on file type. But we 
can also make a search based on semantic correlations. 
We can use more different groups of documents to make 
our KBs. There is no reason that suggest us to use all 
records in the ”documents” table. By using LSA in SQL 
environment we have more flexibility in our analysis, we 
can consider different sets of documents as KB specifies 
a WHERE condition in our SELECT statement. This 
means that for all the considered subsets of documents 
we can estimate similarity between a query and one or 
more documents. For example we can consider a KB 
made only of documents that are present on 
”myUSBPen” resource, and then we can use SQL-query 
like: 
 
SELECT     
LSAInfoKB(toLSAInfo(toLSAVector(corpus)))  
FROM documents   
WHERE sourceName= 'myUSBPen' 
 
Choosing a KB, we can store it in a table for further 
similarity querying or we can make direct similarity query 
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by using nested query. Suppose we have a query 
captured by a simple text field from a client application 
connected to our database. Obviously a query is exactly 
a document that can be converted into a LSA vector and 
used to make similarity estimation. In order to perform a 
similarity query without a ”materialized” KB we can 
submit a query like this to our database. 
 
SELECT  
  simCos ( toLSAVector( corpus ),  
           toLSAVector('TextOfTheQuery'),  
           KB)  
FROM  
  documents ,  
 (SELECT LSAInfoMATRIX(toLSAVector(corpus))  
  FROM docs ) AS KB 
 
Obviously, without stored KB, the query is more time-
expensive than a query based on a materialized KB. In 
other words if we store our KB in a table defined like: 
 
CREATE TABLE AS  
  SELECT     
   LSAInfoMATRIX(  
           toLSAInfo(toLSAVector(corpus) )  
FROM  documents 
 
we can evaluate the similarity level with a query like this: 
 
SELECT  
   simCos ( toLSAVector(corpus),  
            toLSAVector('TextOfTheQuery'),  
            KB. kb )  
FROM documents , KB 
 
In order to appreciate the potential of SQL-LSA fusion 
we can consider the following example. Suppose that we 
found a query made by a natural language that satisfies 
a specific knowledge needed for our work. We can 
constantly update the documents simply using a view 
based on a semantic query as: 
 
CREATE VIEW  
  myPersonalKnowledgeCollectionOnElectric  
AS simCos( toLSAVector(corpus),  
           toLSAVector('TextOfTheQuery'),  
           KB. kb )  
FROM documents ,  
(SELECT LSAInfoMATRIX(toLSAVector(corpus))  
 FROM docs ) AS KB 
 
The semantic similarity obtained from the LSA analysis 
can be used within a SQL command as DELETE or 
INSERT, including a WHERE clause, in order to manage 
our KB. Suppose we want to prune our KB, deleting or 
moving the documents that have a level of semantic 
similarity less than 0.2 with respect to a specific query. 
This task can be done using the following SQL 
statement: 
 

DELETE FROM documents  
WHERE id in  
 SELECT  
  id,  
  simCos(toLSAVector(corpus),  
         toLSAVector('TextOfTheQuery'), 
         KB,  
         kb) < 0 ,2  
 FROM  
    documents ,  
   ( select  
      LSAInfoMATRIX(toLSAVector(corpus))  
     from docs )as KB 
 
Notice that in the query above, the deletion is based on a 
LSA analysis executed on the fly.The potential showed 
above is possible because our implementation is 
considered as an extension of the SQL language. 
 
Future work 
Scalability is one of the most important issues in 
designing software. A significant degradation in system's 
performance must not happen when the database 
becomes larger. In the scope of this research, a further 
work is aimed to be done about the reliability and 
efficiency of using the implemented SQL extension for 
real and huge database of textual information, hopefully, 
with maintained overall system performance. 
 
Conclusion  
In this research we proposed a design and 
implementation of an SQL extension for latent semantic 
analysis applications. We introduced the data types and 
functions used to provide the basic LSA operations. 
Furthermore some real examples were given in order to 
show the simplicity of using the extension in SQL 
queries. 
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Fig. 1- d1 document and related LSAVector s1 

 
 
 

 
Fig. 2- vocabulary and term-document matrix for the KB made by s1,s2 and s3 LSAVectors 

 
 

 
 Fig. 3- term-document matrix and U,S and V matrix for the Knowlesdge Base made by s1,s2 and s3 

LSAVectors 
 
 
 

 
Fig. 4- function tolsavector applied to a simple text document 
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 Fig. 5- Table format 

 


