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Abstract- This paper demonstrates the effect of independent noise in principal components of k normally distributed random 
variables defined by a population covariance matrix. We prove that the principal components determined by a joint 
distribution of the original sample affected by noise can be essentially different in comparison with those determined from 
the original sample. However when the differences between the eigenvalues of the population covariance matrix are 
sufficiently large compared to the level of the noise, the effect of noise in principal components proved to be negligible. We 
support the theoretical results by using simulation study and examples. We also compare the results about the eigenvalues 
and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for 
the decomposition of the time series in multivariate analysis.  
Keywords: principal components; eigenvalue; eigenvector; multivariate analysis 
 
1. Introduction 
Several studies have been developed for the 
investigation of the effect of noise on a population or a 
sample covariance matrix [1-3, 4-7, 8, 9, 10]. One 
approach is the analysis of the effect of noise on a 
sample covariance matrix, given that we have a finite 
number of observations [1, 9, 11]. Another approach is 
the analysis of the effect of noise on a population 
covariance matrix, assuming that we have a virtually 
infinite collection of observations [2-3, 5-7]. In particular, 
it has been analyzed the estimation of a covariance 
matrix of p random variables from n observations by 
either tapering or banding the sample covariance matrix, 
or estimated a banded version of the inverse of the 
covariance [1].  
Analyzing the effect of noise on the population 
covariance matrix is essentially a problem in matrix 
perturbation theory [2-3, 5-7]. The presence of a small 
perturbation in a Hermitian matrix or a population 
covariance matrix has been described by theorems of 
Davis and Kahan [2-3, 6-7]. Moreover, the comparison of 
the results about the eigenvalues for the Jacobi’s method 
and QR iteration when small relative errors in the 
eigenvalues of a matrix occur by small relative errors in 
its entries has been investigated by Demmel and Veselic 
[3]. Nadler by using a matrix perturbation approach study 
how close are the largest eigenvalues and eigenvectors 

of a sample covariance matrix n
S  with those of a 

p p  population matrix Σ [6].  

The effect of noise in the covariance matrix has also 
been analyzed in the field of principal component 
analysis [4, 9, 10-12]. Martin considers a type of 
probability based-principal component analysis, in which 
each of the n observations has a probability distribution 
in p-dimensional space centered on it [4, 11]. In one 
example, Martin considers identical and spherical 
distribution for each observation, so that the underlying 

covariance matrix has the form 
2σ

p
Σ Ι  [4, 11]. 

Further, Webb presents an approach to non linear 
principal components using spherically symmetric kernel 
functions [9]. Another method is the investigation of the 
effect of noise on random variables in the two 
dimensional case described by Zurbenko and Sowizral 
[10]. The authors show that the principal components 
can be changed dramatically when noise is present on 
the random variables in the two dimensional case [10]. 
However when the data are times series, an appropriate 
filter can be used to smooth out the noise and evaluate 
the true parameters of the model [10, 12].  
In this paper, we examine the effect of noise in the field 
of principal component analysis (PCA) defined in more 
than two dimensions. PCA is a statistical tool in 
multivariate analysis with main subject the covariance 
matrix of the observed variables. Unfortunately, statistical 
models are always related with uncertainties regarding 
the determination of those matrices. Those uncertainties 
may be derived by influences into the variables from 
unobserved sources. Frequently, the observations are 
affected by different influences from separate scales [13] 
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or the covariance matrices of the observed variables can 
slowly change in time. All such practical problems deal 
with covariance matrices which can be affected by 
certain hidden influences and not necessarily by noise. 
We may define “noise” what we can not explain directly 
from the corresponding variables. For clear theoretical 
formulation of the problem we add true stochastic noise 
to the original variables, and we investigate the level of 
the noise which may ruin the standard multivariate 
analysis. 
Principal components (PC’s) in different scales are 
usually different, and may be replaced arbitrarily. In this 
paper, we want to determine the level of this disturbance. 
For this reason, we keep the variables with fixed 
covariance structure and we add independent noise. 
Such a model allows the determination of the levels of 
extra influences so as to change completely the PC’s. 
We investigate the PC’s of the population covariance 
matrix defined by the original variables. If the population 
matrix is affected by the noise, then the 
sample covariance can only provide worse result for the 
examination of the PC’s. If the PC’s are replaced 
arbitrarily, then any other method of the factor analysis, 
such as the canonical correlation analysis, will provide 
false results, as well. 
In this paper, we first present the results for the effect of 
noise on eigenvalues and eigenvectors of a population 
covariance matrix associated with a random vector X, 
and then we extend the results in principal component 
analysis [8]. We also compare those results with other 
models examined before in the two dimensional case [2-
3, 6-7]. This theory can be applied when two random 
vectors are uncorrelated, and therefore the covariance 
matrices have completely different structures [8, 14]. 
 
2. The eigenvalues and eigenvectors of the noisy 
covariance matrix 

For the following sections we denote by X a k 1  
random vector associated with the covariance matrix 

Χ
Σ . We also define by = +*

X X  ε  a noisy random 

vector, where ε is a random vector of the noise 

associated with the covariance matrix 
ε

Σ . Then the 

covariance matrix associated with 
*

X  is denoted by 

*ΧΣ . The spectral decomposition of the covariance 

matrix Χ
Σ  is given by: 

Χ
Σ = 1 2 kλ +λ ... λ   

1 1 2 2 k k
e e e e e e  

where 1 2 kλ ,λ ,...,λ  are the eigenvalues of Χ
Σ  such 

that 1 2 kλ λ ... λ   , and  , ,...,
1 2 k

e e e  are the 

associated normalized eigenvectors [11, 15-16]. For the 
following sections, we also assume that the eigenvalues 
are in decreasing order. Similarly it can be defined the 

spectral decomposition of the covariance matrix *ΧΣ .  

The norm of the covariance matrix 
Χ

Σ  can be defined 

by: 

 1λ
Χ

Σ  (1)                                                    

where 
1λ  is the largest eigenvalue of the covariance 

matrix, 
Χ

Σ .  

We also define the norm of a k 1  random vector x as:   

 
1/2

1/2 2 2 2

1 2 k( ) x x ... x    x x x     (2)   

Moreover, the eigenvector can be determined with length 
unity [16]. Then Theorem 1 and Theorem 2 state the 
change in the noisy eigenvectors and principal 
components when the differences between the 
eigenvalues are sufficiently large compared to the 
maximum noise or disturbance [8].  

Theorem 1 Let ( 1λ ,
1e ),..,( kλ ,

ke ) be the spectral 

decomposition of 
Χ

Σ  such that 
2

i i +1 ελ λ iσ   for 

i=1,..,k-1, where 
2

εσεΣ . Then the spectral 

decomposition of *ΧΣ , (
*

1λ ,
*

1
e ),..,(

*

kλ ,
*

k
e ), satisfies 

the conditions: 
* 2

i i ελ λ σ   and 
εiσ *

i ie e  

for i=1,..,k. 

Proof Let ε =  1 2 kε ε ε   be a vector of 

noise associated with the covariance matrix 
ε

Σ . 

Assume that (
*

1λ ,
*

1
e ), (

*

2λ ,
*

2
e ),..,(

*

kλ ,
*

k
e ) are the 

eigenvalues-eigenvectors pairs of the noisy covariance 

matrix, 
ε

Σ . Then by definition (1), we have that: 

* 2

1 1 * * ε ελ λ σ      
Χ Χ Χ Χ

Σ Σ Σ Σ Σ  

The change between the noisy and non-noisy largest 

eigenvalue is at most 
2

εσ , and as a result 

* 2

1 1 ελ λ σ  . 

However, 
Χ

Σ  can be decomposed as: 

Χ
Σ = 1 1λ   k-1Σ1e e . Similarly, the covariance matrix 

*ΧΣ  can be defined as: 
*

* 1=λ   *

Χ k-1
Σ Σ

* *

1 1
e e . Since 

Χ
Σ  is considered as an operator, the difference for the 

second eigenvalue can be estimated by: 

* 2 2

2 2 ε,k-1 ελ λ σ σ       * *

k-1 k-1 k-1 k-1 ε,k-1
Σ Σ Σ Σ Σ

 

Thus, we can conclude that 
* 2

2 2 ελ λ σ  . 
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Similarly, it can be shown that 
* 2

k k ελ λ σ  . The 

covariance matrix 
Χ

Σ  can be decomposed as: 

Χ
Σ = 1 k-1λ ... λ   

1
Σ

1 1 k-1 k-1
e e e e . Moreover, 

the covariance matrix 
*ΧΣ  can be defined as: 

*ΧΣ =
* *

1 k-1λ ... λ    *

1
Σ

* * * *

1 1 k-1 k-1
e e e e . Then the 

difference between the kth noisy and non-noisy 
eigenvalue is given by: 

* 2 2

k k ε,1 ελ λ σ σ      * *

1 1 1 1 ε,1
Σ Σ Σ -Σ Σ

Thus, we can conclude that 
* 2

i i ελ λ σ   for all 

i=1,…,k.  

For the determination of the noisy eigenvector, it can be 

noticed that iε *

1 1
e e . We can distinguish three 

cases. The fist case is when the vector of noise has the 

same direction as 1e . Then, the difference of the 

lengths for the noisy and non-noisy eigenvector is equal 

with 
iεσ , and as a result 

iε= σ*

1 1
e e  εσ  

where εσ  is the standard deviation of the component of 

noise with the maximum length. The second case is 

when the vector of noise is orthogonal to 
1e . By the 

Pythagorean Theorem and definition (2), we can 
estimate the difference between the noisy and non-noisy 
eigenvector by sinθ = 

iεσ

*

1e
=

 
i

i

ε

1/2
2

ε

σ

1 σ


 
ε

1/2
2

ε

σ

1 σ
, where θ is the 

angle between the noisy and non-noisy eigenvector. 
Otherwise, sinθ satisfies the following inequality: sinθ 

<

 
ε

1/2
2

ε

σ

1 σ
. Consequently, the norm of the 

difference between the noisy and non-noisy eigenvector 

will not exceed εσ , εσ *

1 1
e e . Furthermore, it 

can be observed that 
iεσ *

1 1
e e , where iε  is an 

arbitrary component of the vector of noise (Fig. (1)). 

Since we know that ε

1 i n        

max σiε
 

 , we can conclude 

that εσ *

1 1e e . 

For the determination of the second noisy eigenvector, 

we project the vector 
*

2
e  to the plane orthogonal to 1e , 

called by proj(
*

2
e ) . Then by definition (2), we can 

conclude that:  

εproj( ) proj( ) proj( ) proj( ) 2σ         * * * * * * *

2 2 2 2 2 2 2 2 2 2
e e e e e e e e e e

 

The first term is due to 
εσ *

1 1e e , and the 

second term since 
ε

1 i n        

max σiε
 

  (Fig. (2)). 

Since 
2

i i +1 ελ λ iσ    holds for all i=1,…,k-1, it can 

be shown by induction that 
εiσ *

i i
e e  is satisfied 

for all i=1,...,k. Assume that the condition is satisfied for i 
equals to n, and therefore the difference between nth 
noisy and non-noisy eigenvector can be determined by 

the inequality:
εnσ *

n ne e . Then: 

*

n+1 n+1
e e =

proj( ) proj( )  * * *

n+1 n+1 n+1 n+1
e e e e 

proj( ) proj( )  * * *

n+1 n+1 n+1 n+1
e e e e 

ε ε εnσ σ (n+1)σ   

where proj( )*

n+1
e  is the projection of 

*

n+1
e  to the 

plane orthogonal to 
ne . Therefore, the inequality for 

difference between the noisy and non-noisy 

eigenvectors, 
εiσ *

i i
e e  is satisfied for all 

i=1,...,k. 

Theorem 2 Let iY  X
'

i
e  be the ith principal 

component associated with the covariance matrix 
Χ

Σ  

and 
2

i i +1 ελ λ iσ   for i=1,…,k-1. Then the length 

of the noisy principal components 
*

iY  can be 

determined by the inequality:  
1/2

*

i i εY λ σ   for 

i=1,…,k, and the change between iY  and 
*

iY  can be 

defined by  εiσ *

i ie e  for i=1,…,k. 

Proof Since i iVar(Y ) λ , the norm of the first noisy 

principal component is given by: 

   *

1/2 1/2
* *

1 1 1 εY λ λ σ     1/2 1/2 1/2

X εΧ
V V V

 

where 
1/2

X
V  is the matrix with entries the standard 

deviations of the non-noisy variables. 
Therefore by Theorem 1 and induction, the length of the 
kth noisy principal component is given by: 

   
1/2 1/2

* *

k k k εY λ λ σ   . 

Further, by Theorem 1 and the definition of principal 

components the change between iY  and 
*

iY  is given 

by the change between the corresponding noisy and 

non-noisy eigenvector: εiσ *

i ie e  for i=1,..,k. 



Effect of noise in principal component analysis 
 

43 
Journal of Statistics and Mathematics 

ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 2, Issue 2, 2011 

Corollary 1 Suppose that Χ is a random vector 

associated with the covariance matrix 
Χ

Σ  and spectral 

decomposition ( 1λ ,
1e ),..,( kλ ,

ke ). Let ε be a random 

vector of noise independent of X with covariance matrix 

ε
Σ  such that 

2

εσεΣ . Denote by + *
X X ε  a 

noisy random vector. Assume that the eigenvalues of 

Χ
Σ  satisfy the condition 

2

i i +1 ελ λ iσ   for 

i=1,...,k-1 and the signal-to-noise ratio is equal with 

/
Χ ε

Σ Σ . Then by Theorem 1, Fig. (3) shows the 

maximum number of the invariant eigenvectors if the 
signal-to-noise ratio is known (Fig. (3)). 
 
3. Examples and Simulation Study 
In this section we prove that the principal components 
can be replaced arbitrarily when noise is present in a 
random vector X and certain conditions about the noise 
are satisfied. First we present the results for the two 
dimensional case (Example 1) and then we generalize 
the statements for more dimensions (Theorem 3).  

Example 1 Let    1 2Χ Χ X be a random 

vector with covariance matrix Χ
Σ  and spectral 

decomposition ( 1λ ,
1e ), ( 2λ ,

2e ). If noise 

  = 1 2ε ε ε  is present in the random vector X  so 

that 
2

1 2 ελ λ < σ  where 
1 2

2 2 2

ε ε εσ max(σ ,σ ) , 

then the eigenvalues–eigenvectors pairs can be changed 
dramatically. 

Proof Let    1 2Χ Χ X be a vector consists of 

random variables 1Χ  and 2Χ  with covariance matrix 

Χ
Σ =

50 0.25

0.25 50

 
 
 

. Then the eigenvalues and 

eigenvectors are equal with 1λ =Var( 1Y )=50.25, 

[0.707 0.707] 
1

e , 2λ =Var( 2Y )=49.75, and 

[ 0.707 0.707]  
2

e . Therefore, the difference 

between the first and the second eigenvalue is 0.5. 

Suppose that noise   = 1 2ε ε ε  is present in the 

random vector X with covariance matrix 

ε
Σ =

3 0

0 0.5

 
 
 

. Then, since the noise is independent 

of the variables 1Χ  and 2Χ , the covariance matrix of 

the noisy vector = +*
X X  ε  is given by: 

*ΧΣ = Χ
Σ + ε

Σ =
53 0.25

0.25 50.5

 
 
 

. The eigenvalues 

and eigenvectors of the covariance matrix 
*ΧΣ  are 

equal with 
* *

1 1λ Var(Y ) 53.02  , 

 0.99 0.09 *

1e , 
* *

2 2λ Var(Y ) =50.47, and 

 0.09 0.99  *

2e . Thus when noise is present 

in the random vector X , then the eigenvectors are 
changed dramatically. 
Therefore, the principal components determined by the 

random vector X  1Y 0.707 0.7071 2X X   and 

2Y 0.707 0.7071 2X X   , have changed 

dramatically to 
*

1Y 0.99 0.09* *

1 2X X   and 

*

2Y 0.09 0.99* *

1 2X X   . Fig. (4) shows that the 

principal components of the random vector X  have 

been rotated by an angle approximately of 45 , when 

noise is present in the random vector X (Fig. (4)). 
 
3.1 Simulation study 

Denote by X=  k1 2X X X   a random 

vector consists of k random variables with covariance 

matrix 
Χ

Σ . Suppose that noise ε is present in the 

random vector X with covariance matrix 
ε

Σ , such that 

2

εσ n 
ε

Σ  and n 3 . Then the covariance 

matrix of the random vector X can be defined as follows: 

a

X
Σ =

1 1 2 4 j

1 2 3 5 j+1

2 3 3 6 j+2

4 5 6 4 j+3

j j+1 j+2 j+3 k

m c c c c

c m c c c

c c m c c

c c c m c

c c c c m

 
 
 
 
 
 
 
 
 
 

. 

Assume that 1m = Var( 1X ) is an arbitrary integer. Then 

choose as:  

2m Var( )2X = 1m q  such that 0 q < n  

and n, q are integers 

3m Var( )3X = 2m s  where s = q + n 

4m Var( )4X = 3m – q – 2*n and therefore  

k k-1m Var( ) m q (k 2)*nkX     , where 

n =
2

εσ . 

In the special case where 

2 1m Var( ) Var( ) m2 1X X   , choose as 

3 2m Var( ) m 1 n3X    , and therefore 

k k-1m Var( ) m 1 (k 2)*nkX     .  
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Consider 
1c = Cov ( , )1 2X X  and 

2c  = 

Cov ( , )1 3X X  such as: 1c < 1 and 2c <1. Then, let as 

3c =Cov ( , )2 3X X = 1c * 2c  where 3c  is less than 1. 

Also, choose as 

4c =Cov ( , )1 4X X =
3c *

2c =
1c *

2c *
2c =

1c *
2

2c  

where 
1c ,

2c   are defined above and 
5c = 

=Cov ( , )4 2X X =
4c *

3c = 
1c *

2

2c *
1c *

2c =
2

1c *
3

2c . 

Hence, j j-1 j-2c c *c  for j  3, where the jc ’s are 

defined similarly. Following the same algorithm, choose 

as 1 2c ,c 0.5  when n=2, and 1 2c ,c 0.25  for 

n=1.  
Similarly it can be defined the covariance matrix in case 
the variance is increasing along the diagonal. Then the 
covariance matrix of the random vector X can be defined 
as: 

b

X
Σ =

1 1 2 4 j

1 3 5 j+1

2 3 k 3 6 j+2

4 5 6 k 2 j+3

k 1

j j+1 j+2 j+3 k

m c c c c

c c c c

c c m c c

c c c m c

m

c c c c m







 
 
 
 
 
 
 
 
 
 

. 

Assume that km =Var( kX ) is an arbitrary integer. 

Consider as  

k 1m Var( )k-1X  = km q , where 0 q < n  

k 2 k 1m Var( ) m q nk-2X      

k 3 k 2

1 2

m Var( ) m q 2*n

m Var( ) m q (k 2)*n. 

k-3

1

X

X

    

    

 

The remaining elements of the matrix are defined as 
described above.  
Then, it can be shown that the eigenvalues of either the 

covariance matrix 
a

X
Σ  or  

b

X
Σ  satisfy the condition: 

  2 2

ε i i+1 εi 1 σ λ λ iσ    , for i=1,…,k–1 and 

2

εσεΣ . Moreover, when noise ε is present in the 

random vector X, then the eigenvectors of the noisy 

random vector + *
X X ε  can be changed 

arbitrarily. 
Theorem 3 Let X be a random vector with covariance 

matrix Χ
Σ  and let i i i+1λ λ λ    for i=1,..,k-1. If 

random vector of noise ε with covariance matrix ε
Σ  

such that 
2

εσ
ε

Σ  is present in the random vector X 

so that   2 2

ε i i+1 εi 1 σ λ λ < iσ    for i=1,…,k-1 

(3), then the eigenspace is asymptotically invariant, while 
the eigenvectors within the space can be replaced 

arbitrarily. In addition, the conditions for iλ  described 

in (3) cannot be improved. 
 
4. Comparison of the models for the spectral 
decomposition of the noisy covariance matrix 
In this section we compare the results for the noisy 
eigenvalues and eigenvectors described by Theorem 1 in 
the two dimensional case with other models examined 
before [2-3, 6-7]. We show that our results for certain 
conditions satisfied by the noise are more accurate 
compared to other models [2-3, 6-7].  
Lemma 1 Let A be a p p  symmetric matrix and let B 

be a symmetric perturbation. Let  λ, v  be the 

eigenvalue-eigenvector pair of A+B corresponding to 

 iλ , 
i

v  of A and 
j

j i
δ min λ λ


  , where 

 
p

j j 1
λ


 are the eigenvalues of A; then 

sinθ( , )
δ


B

i
v v . 

Lemma 1 follows from classical results in matrix or 
operator perturbation theory [2, 6-7]. The next statement 
(Statement 1) compares the results for the angle 
between the noise and non-noisy eigenvectors derived 
by Lemma 1 with the results by Theorem 1.  

Statement 1 Suppose that 
Χ

Σ  is a 2 2  covariance 

matrix associated with the vector X and ε
Σ  a 2 2  

covariance matrix of the noise, such that 
2 2

ε 1 2 εσ λ λ < 2σ   with 
1/2

εσ (1/ 8) . Then 

the angle between the noisy and non-noisy eigenvector 
can be estimated more accurately by Theorem 1 than by 
Lemma 1.   

Proof In Lemma 1, let 
2

εσ 
ε

B Σ  and 

*

1 2δ λ λ  . Then by Lemma 1, 

2

ε

*

1 2

σ
sin θ( , )

λ λ




*

1 1e e . By Theorem 1, the angle 

between the first noisy and non-noisy eigenvector can be 

determined by: ε

2 1/2

ε

σ
sinθ

(1 σ )



. If 

2 2

ε 1 2 ε2σ λ λ σ    and 
1/2

εσ (1/ 8)  then we 

can prove that 

2

ε ε

2 1/2 *
ε 1 2

σ σ

(1 σ ) λ λ


 
. 

By Theorem 1 we know that: 
* 2

1 2 1 2 ελ λ λ λ σ    . Since 
1/2

εσ (1/ 8) , it 

can be observed that  
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* 2

1 2 ελ λ 3σ  2 1/2

ε ε< σ (1 σ ) . 

Therefore we can conclude that: 
2

ε ε

2 1/2 *
ε 1 2

σ σ

(1 σ ) λ λ


 
 for the first noisy 

eigenvector. 
For the second eigenvector it follows by Lemma 1 that: 

2

ε

*

2 1

σ
sin θ( , )

λ λ




*

2 2e e .  But by Theorem 1, we 

have that: 
* * 2

2 1 2 2 2 1 ελ λ λ λ λ λ 3σ     

2 1/2

ε ε< σ (1 σ ) . Consequently, we show that 

2

ε ε

2 1/2 *
ε 2 1

σ σ

(1 σ ) λ λ


 
. 

Statement 1 can also be extended when 
2 2

ε 1 2 εσ λ λ < kσ   and 
2 1/2

εσ [1/ (k 2k)]   

for k>1. 
Lemma 2 Let H be a positive definite symmetric matrix 
and δH a small relative perturbation of H in the sense of 

ηδH H . Let iλ , 
iv  and 

*

iλ , 
*

i
v  be the i-th 

eigenvalue-eigenvector of H and H+δH, respectively. 

Then  

i

2

λ

η
O( )

absgap
   *

i iv v  

where the absolute gap of eigenvalues is defined as 

i

i j

λ
j i

λ λ
absgap min






H
.                           

Lemma 2 is a result of the standard perturbation theory 
for the eigenvectors [3, 7]. Next, we compare our results 
derived by Theorem 1 for the angle between the noisy 
and non-noisy eigenvectors with the results by Lemma 2. 

Statement 2 Let Χ
Σ  be a 2 2  covariance matrix 

associated with the random vector X and ε
Σ  a 2 2  

covariance matrix of the noise, so that 
2 2

ε 1 2 εσ λ λ < 2σ   with εσ 1/ 4 . Then the 

difference between the noisy and non-noisy eigenvector 
can be estimated more accurately by Theorem 1 than by 
Lemma 2.   

Proof In Lemma 2, consider as δH ε
Σ  and H Χ

Σ . 

Then for the first eigenvector, it follows that: 

2

1 2

1

η
O(η )

λ λ

λ

  


*

1 1e e , where 
2

ε 1σ ηλ . 

However, 1

1 2

ηλ

λ λ

2 2

ε ε

2

1 2 ε

σ σ
=1/2

λ λ 2σ
 


.  

Since εσ 1/ 4 , we have that 1
ε

1 2

ηλ
σ

λ λ



. 

For the second eigenvector, it follows by Lemma 2 that: 

2

2 1

1

η
O( )

λ λ

λ

   


*

2 2e e . 

But, 

2

ε1

2 1 2 1

σηλ
1/ 2

λ λ λ λ
 

 
. Therefore since 

εσ 1/ 4 , we can conclude that 1
ε

1 2

ηλ
2σ

λ λ



. 

It can also be noted that Statement 2 can be extended 

when 
2 2

ε 1 2 εσ λ λ < kσ   and εσ 1/ (2k)  for 

k >1. 
Therefore we proved that the bounds for the 
eigenvectors described by Theorem 1 are more 
accurately compared to Lemma 1 and Lemma 2. Those 
results have been proved for the two dimensional case. 
Since we have proved that the results for the simplest 
case as described by Theorem 1 are more accurately 
compared with Lemma 1 and 2, the investigation for 
higher dimensions is not indispensable. 
 
5.  Discussion  
In this paper, we show that the presence of noise or 
disturbance in a random vector X can change the 
principal components dramatically. In particular, when 
the differences between the eigenvalues of the 
covariance matrix defined by the random vector X are 
small compared to the level of the noise then by 
Theorem 3 the principal components can be changed 
arbitrarily when noise is present in the random vector X. 
On the other hand, when the differences between the 
eigenvalues are sufficiently large compared to the noise 
then by Theorem 1 and 2 the difference between the 
noisy and non-noisy eigenvalues and eigenvectors can 
be estimated by using the covariance matrix of the noise. 
We also compare the results with other models studied 
before [2-3, 6-7] in the two dimensional case and we 
prove that the noisy eigenvalues and eigenvectors can 
be determined more accurate by using our model when 
certain conditions of the noise are satisfied. The results 
of the theorems can be applied when two random 
vectors are uncorrelated and associated with covariance 
matrices with completely different structures [8, 14].  
In general, the principal component analysis is the key 
issue in multivariate analysis. However uncertainties in 
basic variables or contribution from different scales can 
easily ruin the analysis and make inferences erroneous 
[8]. One application of the theory described here, is the 
necessity of the decomposition of a time series into 
components associated with different covariance or 
correlation structures. In this case, we proved by 
Theorem 3 that we cannot keep the components 
together because we may obtain inconclusive results.  
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An example is the determination of the main atmospheric 
factor for the explanation and prediction of ozone 
concentrations [14, 17]. Many authors study the main 
atmospheric factor on ozone concentrations without 
using the decomposition of the time series of ozone and 
the remaining atmospheric variables [16, 18-20]. In 
particular, raw data of ozone, solar radiation and wind 
are analyzed by using the principal component analysis 
but no prominent conclusion has been obtained because 
of the presence of two different components (global and 
synoptic scale component) associated with completely 
different correlation structures in the time series of ozone 
and the atmospheric variables [16].  
However, when the Kolmogorov-Zurbenko filter [21,22] is 
used to decompose the time series of ozone and the 
atmospheric variables into low frequency (global 
component) and high frequency (synoptic scale 
component), the explanation of ozone concentrations 
has been improved essentially [12, 14, 17]. The global 
term components are highly correlated, while the 
synoptic scale component show a low correlation. Since 
different scales provide different covariance structures, 
by Theorem 3 they must be separated. Thus, the 
decomposition of the time series is necessary for the 
analysis and improves the explanation and prediction for 
the ozone time series approximately two times [14, 17].  
In particular, it is shown that solar radiation is the main 
atmospheric factor for the explanation and prediction of 
ozone concentrations when the decomposition of the 
time series and the canonical correlation analysis are 
applied in the model [14, 17]. The results regarding the 
study of ozone are possible only with the decomposition 
of the time series, which can remove contradictory 
effects in similar variables considered in different scales. 
Without such a separation, the multivariate analysis will 
be strongly compromised as the current paper proves. 
Thus, it is essential before any analysis to verify whether 
a random vector consists of vectors associated with 
different covariance or correlation structures. In this 
case, we need to study the random vectors separately 
for avoiding erroneous results in the principal 
components. This theory described here can be 
extended for other methods of the factor analysis, such 
as the canonical correlation analysis. 
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Fig. 1-Representation of the first noisy and non-noisy eigenvector when the differences between the eigenvalues are large 

compared to the noise. The first noisy eigenvector, 
*

1
e , may fluctuate depending on the value of the noise.  

 
Fig.2-Representation of the second noisy eigenvector when the differences between the eigenvalues are large compared to 

the noise. The second noisy eigenvector, 2

*
e , may fluctuate depending on the value of the noise.  
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Fig. 3-Maximum number of eigenvectors which can be detected if the signal-to-noise ratio is known. 

 
Fig. 4-Representation of the change in the angle of non-noisy (left hand figure) and noisy (right hand figure) principal 
components when the differences between the eigenvalues of the variables are small compared to the noise. 
 
List of abbreviations: 
Principal Component Analysis: PCA 
Principal Components: PC’s 
 
 
 
 


