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Abstract - In scenarios where data chunks arrive temporally, a good algorithm for exploratory analysis 
should be able to generate the knowledge and with the next chunk of data arriving, the process should be 
the one of just updating online by accumulating the knowledge derived from the recent chunk. Such an 
incremental learning process in most of the cases indent a lot of memory requiring to carry all earlier data in 
the process of updating the knowledge successively. In this research work we propose to employ a novel 
Cluster-Histo-Regression analysis of the chunk to extract the knowledge for the temporal instant and fuse 
this knowledge through Histo-Regression-Distance analysis with the already accumulated knowledge. We 
have designed a methodology which (i) discards all those data samples from the chunk which have 
participated in the knowledge generation process (ii) indents minimum amount of memory to carry the 
accumulated knowledge and (iii) proposes to carry forward only those limited data samples (referred to as 
hard samples) which could not contribute to knowledge generated at that moment. Knowledge of each 
cluster is represented in the form of a histogram for each dimension of the clustered data and is transformed 
to regression line for the compact representation of the knowledge. The regression line parameters of the 
clusters obtained by incremental augmentation have shown an accuracy of up to 100% for some of the data 
sets that are considered for experimentation. 
Key words: Zero instance memory learning, Partial instance memory learning, Knowledge generation, 
Cluster analysis, Regression analysis, Incremental learning, Incremental augmentation of knowledge 
 
Introduction 
Needless to mention that knowledge is generated 
through a process of learning from the available 
data. Histogram is a better representation of the 
knowledge. Clustering is the most important form 
of learning in pattern recognition applications. In 
traditional learning systems the entire data is 
processed at one stretch and hence it is referred 
as one-shot learning [1].  If the data is of a huge 
size and that it cannot be processed at one 
stretch with the available resources, then the 
traditional one-stretch learning has to be replaced 
by segmenting the data into smaller chunks or 
batches and assimilating the acquired knowledge 
in a piecemeal way leading to piecemeal 
learning. On the other hand, when the availability 
of data is intrinsically temporal and when 
sufficient quantum of data is already available to 
initiate the learning process, waiting for further 
data is undesirable and/or impractical because (i) 
the time gap required for initiating the processing 
of the data increases both in terms of wait time 
and one-shot processing time at the end (ii) the 
volume of data becomes prohibitively high and 
(iii) there should be a need for extracting the 
accumulated knowledge as and when the data 
chunk is received temporally (such as in trend 
analysis); hence one has to move from traditional 
one-shot learning to piecemeal learning 
temporally. In machine learning parlance, this 
type of learning from temporal sequence of 
chunks in a piecemeal way is often referred to as 
on-line learning [1] [2]. 
On-line learning systems [2] require two types of 
memory – (i) concept memory - memory for 
storing and carrying forward the batch 

knowledge, which is the description of the 
knowledge extracted from each chunk of data 
and (ii) instance memory - memory for storing the 
processed data and memory meant to 
accommodate the incoming chunk.  
Clustering is the most established method to 
learn form chunks of data. In this research, 
statistical summary of each of the clusters (such 
as number of elements, mean, standard 
deviation, histogram etc) obtained from the chunk 
of data is provided as a knowledge packet. In the 
process of learning on-line using clustering, if the 
system retains a knowledge packet for each of 
the cluster of every chunk, the concept memory 
grows continuously with the addition of new 
clusters from the subsequent chunks of data. In 
this case, merging of knowledge packets towards 
the end will be a cumbersome process. Similarly, 
if the online systems retain the data of each 
chunk in the instance memory, it also leads to a 
continuous growth of instance memory; which 
increases the computational overheads and will 
act as a bottleneck for the continuous flow of 
chunks.  With the increase in volume of data, 
there is a strong need for some learning system 
which (i) always retains only one knowledge 
structure in the memory for assimilating all the 
fragmented facts (batch knowledge) to get an 
overall knowledge and (ii) does not re-indent the 
past data, but which expects that the new 
process of learning should become more 
intelligent. 
To incorporate the concepts of incremental 
learning in data mining, Michalski [3] has 
observed that provision should be made for 
inserting background knowledge and knowledge 
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about the goal into the knowledge generation 
process and has called the process as 
Incremental Knowledge Mining. In [4], the 
following model for the knowledge generation 
process has been proposed:  
DATA + PRIOR_KNOWLEDGE + GOAL � 
NEW_KNOWLEDGE  
Specifying the GOAL makes the learning process 
supervised or more precisely directed learning. 
Since in many applications the goal may not be 
known apriori and since learning in an 
unsupervised scenario is more demanding [5-7], 
we propose to adopt clustering mechanisms for 
learning. 
In machine learning process, knowledge updation 
via incremental learning is achieved by three 
forms [2] depending on the volume of data used 
or reprocessed or available for reprocessing from 
the knowledge generated in earlier stages. They 
are: (i) Zero instance memory learning, where 
none of the previously processed data are re-
called or re-indented (ii) Full instance memory 
learning where all the past data are retained and 
re-processed and (iii) Partial instance memory 
learning where some of the past data which are 
likely to play a vital role in the learning process 
are carried forward for further processing. Zero 
instance memory learning is the most optimal in 
terms of space requirements and in our recent 
work [8], an attempt to achieve reasonably good 
learning through Zero instance memory learning 
has been made. Full instance memory learning is 
not desirable because of the computational 
overheads [2] [3]. Next is the Partial instance 
memory learning (PIML), which we would like to 
explore to greater depths in this research work 
since there has been relatively not much work 
done on this aspect by the machine learning 
community [2] as also in Data Mining community. 
The important issue that is being addressed in 
PIML is devising strategies to select samples 
from the input stream which can be of use in 
subsequent stages of learning [2]. Another 
important issue which we feel important is 
devising strategies to store the concept 
descriptions, which minimize the concept 
memory and thereby reduce the computational 
overheads. 
Various schemes that have been explored for the 
selection of samples to be carried forward are: (i) 
representative samples [9,10] (ii) consecutive 
sequence of samples over a fixed or changing 
window of time [11,12]; (iii) extreme samples that 
lie on the boundaries of concept descriptions 
[13,14]. In all these schemes, the samples, which 
describe the knowledge, are also being carried 
forward in partial instance memory. These 
samples increase continuously till all the samples 
are processed which directly increase the 
requirement of partial instance memory. Our 
contention is that once the concepts/knowledge 
of the given data is extracted, there will not be 

any need for such samples. Our next question is 
that can we not keep the outliers separate from 
the concept descriptions so that the density of the 
concepts becomes stronger and the outliers can 
be forwarded to subsequent stages? In fact, we 
require only those data samples which could not 
participate in the knowledge generation process, 
specifically with regard to temporal data chunks. 
Such samples may be referred as hard samples. 
Moreover, the hard samples can get merged with 
the succeeding chunks of data and the quantum 
of hard samples will remain minimal at each 
stage of learning, thus minimizing the 
continuously growing requirement of partial 
instance memory.  
Various attempts to extract knowledge 
incrementally through classification and 
clustering have been made in [15-23]. Knowledge 
has also been extracted in the form of 
association rules [24–27]. Another way of 
knowledge extraction is through dimensionality 
reduction [28]. However, none of the above 
works have concentrated on incremental 
agglomeration of knowledge.  For example, to get 
the overall knowledge about an area during 
surveillance by aircraft, image mosaic is being 
done at physical level and the information is 
collected from the overall mosaic image [29].  
Our idea is that if the time gap between the 
arrivals of two image frames can be utilized to 
extract the knowledge contained in image frame 
and if this knowledge could be updated with the 
knowledge of the next image frame, the burden 
of mosaicing the image frames physically and 
processing the bigger image frame can be 
eliminated. At each stage, only the accumulated 
knowledge up to the end of the previous image 
frame should be utilized and all the previous 
image frame(s) may be dropped. 
For incremental learning using clustering, an 
algorithm called Incremental DBSCAN has been 
proposed [16]. In this method, updates to the 
database are processed separately. It is 
observed that whenever an object is being 
inserted into an existing cluster, the objects 
already contained in that cluster can change their 
property (for example, core objects may become 
non core objects and vice versa; border objects 
may become noise objects and vice versa); in 
this connection the objects present in the cluster 
are assumed to be intact and are accessible, 
which increases the partial memory 
requirements. Further, the incremental DBSCAN 
cannot withstand the loss or unavailability of the 
objects of a cluster. 
Some inspiring works have been reported from 
data stream point of view [30, 31]. The data 
stream is assumed to be divided into chunks of 
manageable sizes. The first chunk of data is 
processed offline by applying k-means clustering 
algorithm. The number of clusters obtained 
initially from the first chunk is made proportional 
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to the available memory that means that the 
initial number of clusters will be at maximum level 
and are significantly larger than the natural 
number of clusters in the data.   For each of the 
data sample that arrives from the subsequent 
chunk, a check is made for absorption into any of 
the existing clusters. If merging is accepted, then 
the data sample is merged otherwise the oldest 
cluster (which has not got updated from a long 
time) is deleted to make way for the new cluster 
to be created with this sample. This process is 
nothing but merging of data with the existing 
knowledge. However, this mechanism of 
updating knowledge suffers from the following 
drawbacks. (i) Clusters generated at the initial 
stages could be sparse (ii) Subsequent learning 
process becomes biased by the clusters 
generated from the initial chunk of data (iii) 
Deleting the oldest cluster is nothing but loosing 
some important knowledge forever which 
otherwise could be of importance for the future 
data (iv) Clear view of stagnancy cannot be 
detected to enforce stopping criteria for the 
continuous learning process that is when there is 
no significant change in the generated 
knowledge, there is no necessity of continuing 
the learning process. 
 A new clustering algorithm called LSEARCH has 
been proposed to learn from the stream of data 
[31]. The method of handling the data stream is 
similar to the one proposed earlier [30]. But, 
instead of specifying the number of clusters in 
advance, the authors propose a mechanism 
called facility location to find out the optimal 
number of clusters. In this method, k-medians are 
assigned initially and the quality of clustering is 
measured by the sum of squared distances of 
data points from their assigned medians. 
The data stream methods proposed in [30] and 
[31] assume the steady arrival of data and they 
also assume that the time gap between the 
arrivals of two data samples is sufficient for 
getting the knowledge updated. If the same 
concept can be extended to the chunks of data, 
the time gap between the arrivals of two 
consecutive chunks should be enough to perform 
mining and knowledge integration. In [30], when it 
is assumed that the data stream can wait till the 
first chunk is processed, why the stream cannot 
wait for other chunks? If it can wait, we can 
overcome the necessity of using online clustering 
algorithms for learning as every chunk could be 
processed offline and only agglomeration of 
knowledge need be done online. Since in many 
practical scenarios, the number of clusters is not 
known in advance, a clustering algorithm which 
avoids the specification of number of clusters in 
advance could provide dense clusters. Further, 
there should be some mechanism in the 
clustering algorithm to separate outliers as they 
greatly affect the quality of clusters.  

The density based spatial clustering of 
applications of noise (DBSCAN) provides a 
mechanism to separate outliers from the data 
[15, 32-34]. It is argued that DBSCAN is one of 
the most efficient algorithms on large databases 
and is applicable to any database containing data 
from metric space to a spatial database or to a 
WWW-log database. Any insertion(s)/deletion(s) 
of object(s) affect the current clustering only in 
the neighborhood of the object because of the 
density based nature of DBSCAN. It is also clear 
that DBSCAN requires only one scan to cluster 
the objects. Because of these advantages, we 
are motivated to use DBSCAN algorithm for local 
cluster analysis in the present research. 
However, DBSCAN is sensitive to its parameters 
MinPts and Eps. These parameters must have to 
be managed properly with the background 
knowledge [2] during the knowledge generation 
process. 
For the other issue of storing the concept 
descriptions (knowledge parameters), which 
minimizes the concept memory and 
computational overheads, [15, 30] have 
suggested Linear sum of elements (LS), Sum of 
squares of all elements (SSQ), Number of 
elements in a cluster as the knowledge 
parameters. It is observed that these parameters 
are the compact representation of the data and 
are sufficient for calculating the measurements 
required for clustering decisions. Undoubtedly, 
these parameters are good for spherical shaped 
clusters. However, for clusters of elongated and 
irregular shapes, we have to identify proper 
knowledge parameters. It is noted that only 
histogram has the generic ability to effectively 
characterize most of the data types and the 
internal pattern of distribution of elements within 
the clusters can be easily depicted by histograms 
[35]. Hence we used histograms to represent the 
concept descriptions. It is observed that 
algorithms for producing histograms have 
parameters such as number of bins and bin width 
[36, 37]. It is required to have same number of 
bins and same bin width for all datasets or all 
clusters within a dataset for the effective 
characterization of data into histograms. Hence 
the data has to be normalized to maintain the 
histogram spread between 0 and 1 and the 
number of bins could be fixed as 10 or 20 
depending upon the required precision. Spread of 
the histogram is divided by the number of bins to 
get the bin width. It is noted that storage of 
histograms requires memory for number of bins, 
bin width and memory for the details of each bin. 
It is further shown that histograms can be easily 
converted to regression lines.  Regression line is 
also a powerful knowledge representative which 
holds more details about the data in a 
compressed form which requires only two 
parameters - slope and intercept. Since we 
propose to have a histogram for each feature or 
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each dimension of the clustered data, we opted 
to have a regression line instead of a histogram 
which reduces the memory requirement. 
Ultimately, because of linear regression, the 
parameters for histograms such as bin width, 
number of bins etc will not be of concern. Proofs 
have also been provided to show that regression 
line is a condensed form of knowledge 
representation [38]. Moreover,   suitability of 
regression analysis by dividing the data into 
smaller blocks and finally combining the 
regression results has been established by Fan 
et al [38], though it is not for temporal data. 
Hence, we have employed Cluster-Histo-
Regression analysis in this research work. For 
comparison between the knowledge packets, 
distance between the corresponding histo-
regression lines has to be measured and for this 
we employed Histo-Regression-Distance [36, 37]. 
To make it complete, a glimpse at the conversion 
of histograms to regression lines through an 
intermediate stage of constructing its cumulative 
histogram and finding distance between 
regression lines as proposed by [36, 37] is given 
in Appendix.  
As discussed earlier, we concentrate here on 
achieving incremental learning in the context of 
data arriving temporally where, incremental 
learning is the only possibility or a better 
alternate. Further we presume that the data 
which is arriving temporally is computationally 
manageable and can be easily processed at one 
step without the requirement of splitting. If the 
chunk becomes voluminous then it has to be split 
internally, the problem of different orders of 
processing the split chunk may crop up as the 
different orders of processing may lead to 
different results and we may face the problem of 
order effects [39] and this aspect requires an 
extensive study, which is being pursued by us.  
Since temporal datasets are not available or not 
so easily available, various methods of simulation 
of temporal datasets have been explored in [19, 
32, 38]. We are inclined to use the one explained 
in [19] where an offline situation is easily 
converted to an on-line situation by dividing the 
given data into smaller batches or chunks and 
processing these batches one by one to simulate 
the temporal behavior. Before dividing the data 
into chunks, we randomly arranged the samples 
of a given dataset and then divided them into 
chunks of manageable sizes. 
The proposed model for incremental learning 
through clustering using partial instance memory 
in a nut shell can be formulated as follows: 
(i) The hard samples from the just previous 

chunk which are retained in partial 
instance memory are appended to the 
data of current chunk. DBSCAN 
clustering mechanism is applied on the 
data to generate knowledge and the 
overall knowledge is updated; hard 

samples of the present chunk are sent 
to partial instance memory;  

(ii) At the end of arrival of all chunks, 
knowledge of each of the hard sample 
stored in partial instance memory is 
extracted and is updated with the overall 
knowledge. 

As an alternative for comparison, we have 
retained all the hard samples without mixing them 
with the fresh incoming chunks and processed 
them at the end after arrival of all chunks. 
 
The Proposed approach 
During incremental progress, when a batch or 
chunk of data arrives, learning is achieved by (i) 
clustering (ii) extracting the knowledge of clusters 
to obtain the batch knowledge and (iii) updating 
the overall knowledge which is maintained as 
knowledge packet(s) in the concept memory. The 
batch knowledge as well as the given chunk of 
data samples are discarded except those data 
samples which have been identified as hard 
samples during the knowledge generation 
process (clustering). During the process of 
updating the overall knowledge, the knowledge 
packets of the batch knowledge might either get 
absorbed in the existing knowledge packet(s) or 
might get added as entirely new knowledge 
packet(s) resulting in accumulation of knowledge 
packets into the concept memory. If a knowledge 
packet from the batch knowledge gets absorbed, 
the corresponding knowledge packet which has 
absorbed the packet will grow and the distance 
between the current knowledge packet and the 
existing knowledge packets get reduced forcing 
the knowledge packets of the overall knowledge 
to get merged further. The continued addition of 
new knowledge packets into the concept memory 
and merging of the nearest knowledge packets 
could cause uneven distribution of knowledge 
requiring splitting of knowledge packet(s) which 
requires access to the past data which is already 
discarded. Hence, there should be some 
mechanism at the time of merging itself which 
can avoid splitting of the knowledge packet at a 
later stage.   
In case of data arriving temporally, a chunk of 
data would be available at the end of some 
interval of time. From an i

th
 data chunk or batch 

[B]i, i
th
 knowledge set [K]i can be derived. Sooner 

the [K]i is available, it has to be merged with the 
existing knowledge [Knowledge]i-1 which is the 
one updated up to the end of (i-1)

th
 stage; then,  

[Knowledge]i  ƒ( [Knowledge]i-1, [K]i );  
where, 
[Knowledge]i-1  ƒ( [Knowledge]i-2, [K]i-1 ),  

[Knowledge]i-2  ƒ( [Knowledge]i-3, [K]i-2 ) and so 
on.  
Finally overall knowledge is:  
[Knowledge]  [Knowledge]n    if n

th
 stage is the 

last stage. 
It has been shown that the knowledge of any kind 
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of data (generic data) can be conveniently 
represented by a histogram and the knowledge 
assimilated in histograms can further be 
compressed by converting them to regression 
lines [36, 37]. We have identified number of 
elements in each cluster, mean (µ), standard 
deviation (σ) and regression line as knowledge 
parameters. The number of elements in each 
cluster will allow us to keep the knowledge 
packets in normalized form and simplify the 
process of obtaining the overall knowledge 
especially while merging the knowledge packets. 
Though the presence of regression line nullifies 
the requirement of µ and σ, we have retained µ 
for classical requirements and σ for estimating 
the density for the predefined condition of 
merging the knowledge packets, which is 
discussed in detail in the following section. 
Regression line effectively represents the 
knowledge of both spherical as well as non-
spherical clusters. These parameters are 
sufficient for easier assimilation of knowledge 
packets and overcome the drawbacks of 
maintaining the samples that lie on the 
boundaries of concept descriptions [13] as wells 
as retaining the consecutive samples over a fixed 
and changing window of time [11]. For an n-
dimensional data space, if the current batch [B]i 
shows up ‘k’ knowledge packets [Cl1] [Cl2]… [Clk], 
then knowledge structure [K]i is as shown in 
Table I. 
Therefore, a knowledge packet in our research is 
composed of number of elments in a cluster;  
mean, standard deviation and regression line 
(represented by slope and intercept) of each 
dimension of the cluster depending upon the 
number of dimensions in the data. 
 
The new computational model 
Here we present the model for incremental 
learning. In our earlier work [8], a similar model 
for achieving incremental learning without re-
indenting the past data leading to the concept of 
zero-instance memory learning [2] was proposed. 
The basic model for generation of knowledge of 
an i

th
 chunk/batch [B]i is: 

[DATA]i  ([DATA]i U [hard samples] i-1) --- (1) 

[K]i + [hard samples]i     [DATA]i  --- (2) 
The basic model for updation of knowledge after 
the processing of i

th
 batch [B]i is: 

[Knowledge]i  ƒ( [Knowledge]i-1, [K]i )  --- (3) 
where, [K]i is the set of knowledge packets 
obtained by the local cluster analysis on the 
chunk/batch [B]i and [Knowledge]i-1 is the set of 
knowledge packets obtained by the incremental 
agglomeration up to the end of (i-1)

th
 

chunk/batch. 
Let us assume that updated [Knowledge]i-1 has ‘p’ 
knowledge packets up to the end of   (i-1)

th
 batch. 

[Knowledge]i-1 = {[CL1], [CL2], … [CLP]}  ---(4) 
where, [CLX] = {µX, σX, LX};  

Let us assume that the present batch of data [B]i 
has resulted into k number of knowledge packets. 
[K]i = {[Cl1], [Cl2] … [Clk]}   --- (5)                                    
where, [Clj] = {µj, σj, Lj}; 
The entire process of representation of 
knowledge packet in terms of histogram, 
transformation of histogram to normalized 
histogram then to cumulative histogram and 
subsequently to normalized regression line and 
finding distance between regression lines is 
presented in detail [36] [37]. For the sake of 
completeness, a summary of the regression 
distance measure is presented in Appendix. 
The creation of [Knowledge]i is performed by 
updating [Knowledge]i-1 based on the relation (3). 
To enable this it is required to find the nearest 
knowledge packets one from [Knowledge]i-1and 
the other from [K]i. The nearest two knowledge 
packets [CLX] Є [Knowledge]i-1 and [Clj] Є [K]i are 
accomplished by measuring the distance 
between the corresponding lines of regression LX 
Є [Knowledge]i-1 and Lj Є [K]i. If two clusters [CLX] 
and [Clj] can be merged then the proposed 
merging operation will result in: 

new_µ = 














+

+

Xj

XXjj

nn

nn )*()*( µµ
  --- (6) 

new_σ = 

)/()))(*())(*((
2222

XjXXXjjj nndndn ++++ σσ  --(7) 

where, dj
2
 = (µj – new_µ)

2
 ;  dx

2
 = (µx – new_µ)

2
; 

new_L in terms of slope and intercept is obtained 
as follows: 
new_S = ((nj * Sj) + (nx * Sx)) / (nj+nx)     --- (8) 
new_I = ((nj * Ij) + (nx * Ix)) / (nj+nx)        --- (9)             
where,  Sj is the slope of the line Lj and Sx is the 
slope of the line Lx ; Ij is the intercept of line Lj and 
Ix is the intercept of line Lx. 
Proofs for these formulae are available in 
statistics [41]. These details are also reported in 
[8].       
The merging is allowed based on the following 
criteria: 
Let q1 = (new_σ – σj); and let q2 = (new_σ – σX); 
then q = min (q1, q2); 
Merging of the two knowledge packets can be 
done if (q < = predefined range); Here the 
predefined range is the prior knowledge [4] about 
the density of the dataset. 
At the end of this procedure [Knowledge]i  is 
created which even if no merge happens then 
results in  (p+k) packets of knowledge. Upon 
complete merging of the packets the resulting 
number of knowledge packets produced is 
min(p,k). Therefore the number of knowledge 
packets will be between [min(p,k) and (p+k)]. In 
fact, it is possible that the number of knowledge 
packets at each level could be less than the 
number of knowledge packets as worked out 
above, because of induction of continued 
merging process. We have considered the 
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natural merging only at one level because of the 
implementation constraints as well as to prevent 
the possibility of over merging causing a 
knowledge packet to get split later. 
The above process of updating continues till all n 
batches are processed. Finally [Knowledge]   
[Knowledge]n = ƒ( [Knowledge]n-1, [k]n ). However, 
the process of merging has to be continued to get 
the optimal number of knowledge packets at the 
end. Finally, the process is terminated when the 
desired number of knowledge packets are 
produced or the density of the proposed merge 
becomes greater than the predefined threshold. 
While designing the new model, we have also 
stressed upon retaining the hard samples of the 
previous chunk in the partial instance memory. 
i.e., at any stage of combining [Knowledge]i-1 with 
[k]i, the hard samples of [B]i-1 will be utilized. We 
can totally reject the outliers or hard samples, but 
this will result in loss of information which may 
lead to inconsistent learning. At every stage, the 
partial instance memory is emptied and the hard 
samples present in partial instance memory are 
appended with the next immediate chunk of data 
samples for further processing. This allows the 
outliers or hard samples of each batch to 
participate in the knowledge generation process 
resulting in more accurate final knowledge. The 
hard samples of the last batch are divided into 
packets of single sample and are processed for 
merging. 
As mentioned earlier, for the sake of comparative 
study, instead of processing the hard samples 
with the next immediate chunk, we have retained 
all the hard samples and processed them at the 
end. For this, the basic model for generation of 
knowledge of an i

th
 batch [B]i is: 

 [K]i + [hard samples]i      [DATA]i   --- (10) 

[hard samples]i  [hard samples]i U  [hard 

samples]i-1  --- (11) 
It should be observed that, a suitable strategy is 
presented for merging the knowledge packets, 
but not for splitting a knowledge packet. Our 
argument is that since merging operation is 
prevented under unfavorable conditions, the 
question of subsequent splitting does not arise. 
 
Algorithm 
Algorithm: Partial Instance Memory learning 
using clustering 
Input: Temporal flow-in of data in terms of 
batches; DBSCAN parameters MinPts and Eps 
Output: Clusters of data and their knowledge; 
and outliers, if any. 
Let us assume that a batch of data samples is 
available at i-

th
 time instant. 

Consider the first/initial batch of data; set the 
parameters Eps – the radius that delimitate the 
neighborhood area of a point and MinPts – the 
minimum number of points that must exist in the 
Eps-neighborhood. Apply the DBSCAN clustering 
algorithm [34] to find natural groups/clusters in 

the given data. Outliers/hard data are to be 
retained and appended to the next batch of data; 
let us say ‘p’ natural clusters are obtained. The ‘p’ 
clusters are the ‘p’ knowledge packets. 
 
1. do for all the clusters of initial batch 
2. extract_knowledge to obtain ‘p’ 

knowledge_packets; 
3. end  for 
4. do for all the knowledge packets of the initial 

batch 
5. find_distance between the 

knowledge_packets and record them in the 
distance_matrix; 

6. end for 
7. do for the batches of data arriving 

sequentially (Datat for t = 2 to n) 

8. data_to_be_processed = (Datat U  

hard_samplest-1)  
9. Apply the same clustering algorithm on 

data_to_be_processed;  let us say ‘k’ natural 
clusters are obtained. 

10. do for the ‘k’ natural clusters obtained 
11. extract_knowledge; 
12. find_distance between this packet of 

knowledge to all the knowledge_packets 
available in the initial batch; 

13. Record the packet number which shows the 
minimum distance; the packet number is 
destination_pkt_number and the minimum 
distance is min_val; 

14. In the distance_matrix, search the 
row/column represented by the 
destination_pkt_number for a value less than 
min_val. 

15. if found 
a. Move this knowledge packet as an additional 

knowledge packet of the initial batch; this 
increases the knowledge_packets of the initial 
batch by one. 

b. Re-compute the distance_matrix; 
16. else 

/* Check density_of_the_proposed_merge;*/ 
if density_of_the_proposed_merge is in a pre- 
defined acceptable range 
(i) Merge this knowledge packet with the 
knowledge packet of the initial batch which is 
represented by the  destination_pkt_number; 
(ii) Re-compute the distance_matrix; 
else   
(iii) Move this knowledge packet as an additional 
knowledge packet of the initial batch; this 
increases the knowledge_packets of the initial 
batch by one. 
(iv) Re-compute the distance_matrix; 
end if; 
17. end if 
18. end for; 
19. end for; 
20. do while no. of knowledge packets > Goal 
21. find the packets with minimum distance; 
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22. if  they can be merged as per the 
density_of_the_proposed_merge, merge 
them; 

23. reduce the number of knowledge packets by 
one; 

24. Re-compute the distance_matrix; 
25. else  set minimum distance to a very high 

value; 
26. end if; 
27. end for; 
28. end Partial Instance Memory Learning 
Algorithm: extract_knowledge 
1. do for each cluster 
2. keep the number of elements as knowledge; 
3. do for each dimension of cluster 
4. get the mean (µ); get the standard deviation 
(σ); 
5. normalize the data values and fix up the 
number of bins. 
6. construct a histogram; Obtain a cumulative 
histogram; Normalize the cumulative histogram 
and fit a first order polynomial to the normalized 
cumulative histogram to obtain a regression line 
(L); 
7. end do; 
8. end do; 
9. return µ, σ, L; 
10. end extract_knowledge; 
Algorithm: find_distance 
/* from a packet of knowledge to all other packets 
of knowledge */ 

1. distance[1] = 0; 
2. do for know_pkts = 2 to p 
3. initial_distance = 0; 
4. do for dimensions = 1 to d 
5. dist[dimensions] = 

distance_between_lines(line[dimensions
], pkt[1], line[dimensions], 
pkt[know_pkts], n1, n2); 

6. initial_distance = initial_distance + 
dist[dimensions]; 

7. end for 
8. distance[know_pkts] = initial_distance; 
9. end for; 
10. return distance; 
11. end /* find_distance*/ 

Algorithm: distance_between_lines( line[ ], 
pkt[1],line [ ], pkt[ ], n1,n2) 
/* n1 = no of elements in line 1 and n2 = no of 
elements in line 2 */ 

1. If two lines do not intersect 
2. dist1=distance between the first end 

points of given lines; 
3. dist2=distance between the second end 

points of given lines; 
4. else 
5. get the point of intersection of the two 

lines (Xi,Yi); 
6. dist1= (distance between the first end 

points of given lines * Yi); 
7. dist2= (distance between the second 

end points of given lines * (1- Yi)); 

8. end  /* if  */ 
9. area_bw_lines = (dist1 + dist2)/2; 
10. len1 = length of line1; 
11. len2 = length of line2; 
12. behavior_of_lines = abs(len1 – len2); 
13. distance_bw_line1_and_line2 = (α * 

area_bw_lines) + (1- α) * 
behavior_of_lines; 
/* α is a tunable parameter between 0 
and 1 */ 

14. return distance_bw_line1_and_line2; 
15. end /* distance_between_lines */ 

 
Complexity Analysis 
(i) Time complexity of DBSCAN clustering 
mechanism is O(nlogn) [16, 34, 42] where ‘n’ is 
the number of samples in each chunk;  If there 
are ‘k’ number of batches, then the time 
complexity becomes k * (nlogn);  
(ii) Extracting knowledge of each cluster: 
If there are m clusters in a batch and if there are 
d dimensions of each cluster, then for extracting 
knowledge of each batch, the time required is 
O(md); 
For k number of batches, the time required to 
extract knowledge is k * (md) 
(iii) Finding distance between knowledge 
packets: 
(a) If there are m knowledge packets obtained 
from the initial batch, time required to find 
distance between them is m (m-1)/2; 
(b) Finding the distance between each packet of 
knowledge of the subsequent batches with the m 
knowledge packets of the initial batch: 

1. Finding distance between a packet of 
knowledge to m knowledge packets of 
initial batch is 1* m; If there are m1 
knowledge packets of the subsequent 
batch, finding distance between these 
m1 knowledge packets with the m 
knowledge packets of the initial batch, 
the time required is m * m1; 

2. Re-computing the distance matrix 
whether the packet of knowledge of the 
subsequent batch is merged with the 
initial batch or the packet of knowledge 
is moved as an additional knowledge 
packet of initial batch is m (m-1)/2; 

3. There are k-1 number of subsequent 
batches, then the distance between 
each packet of knowledge of the 
subsequent batches with the m 
knowledge packets of the initial batch is: 
[(k-1) *  (m * m1) * m (m-1)/2]; 

In all, the complexity is: m (m-1)/2 + [(k-1) * (m * 
m1) * m (m-1)/2]; 
(iv)Time for final merging of knowledge packets: 
The dominant operation in this process is the re-
computing of the distance matrix; hence the time 
required is m (m-1)/2; 
The Overall complexity is:  
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[k * (nlogn)] + [k * (md)] + [m (m-1)/2 + [(k-1) * (m 
* m1) * m (m-1)/2]] + [m (m-1)/2];  
� O (m

3
n);  

It should be noted that m is the number of 

knowledge packets. Further since m n= , we 

can assume that m is always bound by a 
constant. In practical scenario it is also true that 
one could be interested in designing predefined 
number of knowledge packets only. Thus the 

above expression may be simplified to O ( λ n) 

where, λ  is in terms of m. This implies that the 

scan through the data samples is only once and 
the time of computation also depends upon the 
knowledge packets contained in the data space. 
 
An Illustrative Example for Partial Instance 
Memory Learning using clustering 
The synthetic dataset has been used for clear 
understanding and a visual demonstration of the 
proposed method. The synthetic dataset of 5000 
points in a 2D space distributed over five classes 
is shown in Fig 1. Similar dataset has been used 
in to simulate the stream of data [31]. For 
exhaustive profile analysis, we have also 
conducted experiments on synthetic dataset by 
(i) keeping the number of samples in a batch 
constant and varying the total number of samples 
(ii) keeping the total number of samples constant 
and varying the number of processing batches. 
Also for supervised experimentation we have 
varied the number of knowledge packets present 
in the overall data mass. 
We randomly arranged the samples of the 
dataset and segmented the dataset into four 
batches of equal size and processed the four 
batches one at a time in a sequential order 
simulating the temporal arrival of data. For 
DBSCAN, Eps was set to 0.25 and MinPts was 
set to 20; the threshold for merging of batches 
was set to 0.15. Batch B1 was considered as the 
initial batch. Upon applying DBSCAN, we 
obtained 22 clusters as shown in Fig 2. 
In Fig 2, the first row indicates cluster numbers 1 
to 7, the second row indicates 8 to 14, third row 
indicates 15 to 21 and the last row cluster 
number 22. The same representation scheme is 
followed for other figures which represent the 
clusters. Knowledge of all these clusters was 
extracted to obtain the 22 knowledge packets. 
Out of the 1250 elements of batch B1, 566 
elements were marked as outliers (because of 
the stringent parameters Eps and MinPts of 
DBSCAN) and appended to the second batch B2 
as per the requirement of our proposed method 
of PIML.  From this batch B2, we obtained 39 
clusters as shown in Fig 3.  Knowledge of these 
clusters was extracted to obtain 39 knowledge 
packets. 
Out of the 39 knowledge packets obtained from 
this batch, 24 got merged with some of the 
knowledge packets of batch B1, which is now K1, 

using the Histo-Regression-Distance [36, 37]. 
The fifteen unmerged knowledge packets of B2 
are appended to the concept memory which 
brings the total number of knowledge packets to 
37 (22 + 15) at the end of batch B2. The clusters 
represented by these knowledge packets are 
shown in Fig 4. As the data samples of these 
clusters are assumed to be not available, just for 
visualization, these clusters have been projected 
here. 
 
Because of the merging of 24 knowledge packets 
into some of the knowledge packets of K1, the 
knowledge packets of K1 have grown and may 
attract the existing knowledge packets forcing 
internal merging of the knowledge packets. At the 
first level of internal merging of the knowledge 
packets at the end of B2, the number of 
knowledge packets were reduced to 25 which is 
now K2 and the clusters of these knowledge 
packets are shown in Fig 5. 
Clusters obtained by batch B3 are shown in Fig 6. 
From these clusters, knowledge packets are 
obtained. 
Nineteen knowledge packets of this batch got 
merged into some of the existing knowledge 
packets of K2. The six unmerged knowledge 
packets of this batch are appended to the 
concept memory, which brings the total 
knowledge packets to 31 (25 + 6) and after 
internal merging there are 21 knowledge packets 
(after B3) which is now K3 and the corresponding 
clusters of the knowledge packets of K3  are 
shown in Fig 7. 
Similarly, the clusters obtained from B4 are shown 
in Fig 8 and the corresponding knowledge 
packets are obtained. As usual, some of the 
knowledge packets got merged into the existing 
knowledge packets of K3 and after internal 
merging (because of the growth in knowledge 
packets), we obtained twenty four knowledge 
packets and the corresponding clusters are 
shown in Fig 9. Each hard sample of B4 is 
considered as an individual knowledge packet 
and is merged into the existing knowledge 
packets. Many knowledge packets got merged 
into the knowledge packets of K4 and these 
knowledge packets merged further resulting in 29 
knowledge packets; the clusters of these 
knowledge packets are shown in Fig 10. In this 
figure, we can easily observe the five dominating 
clusters. 
Dynamic merging of the nearest knowledge 
packets repeatedly until the desired number of 
knowledge packets are obtained or the desired 
threshold is met, yields the five knowledge 
packets. The corresponding clusters of these five 
knowledge packets are shown in Fig 11. 
The details of the number of knowledge packets, 
number of hard samples at each stage, and 
number of unmerged clusters are shown in Table 
II. 
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From Table II, it is clear that even though at each 
stage few knowledge packets are getting added, 
the overall number of knowledge packets is 
getting reduced by the internal merging operation 
and thus minimizing the concept memory. Also, 
the outliers of one stage are getting merged with 
the succeeding batch, thus reducing the 
requirement of partial instance memory. 
Table III gives the summary of deviation of 
knowledge parameters of all the five knowledge 
packets. It is clear that a deviation of less than 
1% in almost all the knowledge parameters is 
negligibly small considering that the knowledge 
has been gathered incrementally which should 
have suffered a significant estimation error. 
Table IV shows the comparison of deviation in 
knowledge parameters with zero instance 
memory learning [8] and the present partial 
instance memory learning. Since the hard 
samples at each stage of learning was assumed 
unavailable in zero instance memory learning, 
the deviation in knowledge parameters is higher. 
Still this deviation can be considered as minimal 
since a lot of time and space could be saved. 
Further, if the number of hard samples at each 
stage would have been zero, then the results 
obtained by zero instance memory learning 
would have been same as partial instance 
memory learning. 
The percentage of average deviation in 
knowledge parameters of zero and partial 
instance memory learning is shown in Fig 12. 
It is clear that there is significant improvement in 
the final knowledge parameters in partial instance 
memory when compared with zero instance 
memory [8]. This is at the cost of additional 
memory for maintaining the hard samples and 
computational time for reprocessing of hard 
samples at each stage of learning. An average 
deviation of less than 1% in the knowledge 
parameters of partial instance memory is meager 
when the knowledge is fused in a piecemeal 
fashion. This indicates the power of histogram 
based regression line as a parameter for 
knowledge representation and the suitability of 
histo-regression-distance [36, 37] for incremental 
learning through clustering. 
As mentioned earlier, instead of processing the 
hard samples of a chunk with samples of the next 
immediate chunk, if all the hard samples are 
accumulated and processed at the end, the 
deviation in knowledge parameters up to n

th
 

batch is similar to that of the zero instance 
memory learning. However, when all the 
accumulated hard samples are processed, we 
get the values for the knowledge parameters 
similar to the one shown in Table III. 
In order to get clear idea about the average size 
of the partial instance memory, we have also 
conducted experiments by dividing the synthetic 
dataset of 5000 points into (i) 5 batches of 1000 
samples each (ii) 8 batches of 625 samples each 

(iii) 10 batches of 500 samples each and (iv) 20 
batches of 250 samples each and processed 
them in different orders. The average number of 
samples retained in partial memory when the 
given dataset of 5000 samples is divided into 4, 
5, 8, 10 and 20 batches of different sizes is 
depicted in Fig 13. From the graph, it is clear that 
the average number of samples maintained in 
partial instance memory is less than 500. For the 
experiments with varying number of batches as 
well as with different batch sizes, the results 
obtained are similar. 
A similar experiment of dividing the dataset of 
5000 samples into 5 batches of 1000 samples 
each, 8 batches of 625 samples each, 10 
batches of 500 samples and 20 batches of 250 
samples each, was conducted. The growing size 
of the partial instance memory is depicted in Fig 
14. 
From Fig 14, it is clear that if the batch size is 
smaller as for example, the batch sizes of 625, 
500 and 250,  the entire data of all batches is 
considered as hard samples and gets 
accumulated in the partial instance memory. Only 
when all the batches have arrived, the process of 
learning begins with accumulated hard samples; 
in which case learning is no longer incremental. 
Even after waiting for the batches to arrive and 
even after wasting lot of effort in trying to group 
the elements of each batch unsuccessfully, we 
still have to process a larger group of elements 
which requires lot of memory and the available 
memory, though large is finite [38]. 
Worst will be the scenario if the process of 
learning is based on zero instance memory, as 
no knowledge is generated at both intermediate 
as well as at the final stages. 
Experiments were also conducted by keeping the 
number of samples in a batch as constant and 
varying the total number of samples. The batch 
size was fixed at 1000. The initial dataset of 5000 
samples was increased to 10,000 samples with 
2000 samples in each class. Further the total 
number of samples increased to 15,000, 20000, 
30000, 40000 and 50000 with 3000, 4000, 6000, 
8000 and 10000 samples respectively in each 
class. The average of total number of knowledge 
packets obtained when the number of batches 
was 5, 10, 15, 20, 30, 40 and 50 were projected 
in Fig 15. It is clear that requirement of memory 
to store concepts has got stabilized. Actually in 
principle, the number of knowledge packets 
should die down with the increase in the number 
of batches. However, as mentioned earlier, 
because of the internal merging of only one level 
to avoid over merging, we have obtained only the 
stability. 
Result obtained with a similar experiment by 
accumulating all the hard samples in partial 
instance memory instead of processing them with 
the next immediate batch or chunk, is depicted in 
Fig 16. It is clear that the requirement of partial 
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instance memory keeps on increasing with the 
increase in number of batches. Further there will 
be a deviation in the intermediate knowledge as 
the hard samples are not allowed to participate at 
all levels. 
We have also conducted experiments by 
increasing the number of classes to six, seven 
and up to ten and the results obtained was 
similar for average number of hard samples. 
 
Experimentation 
We have conducted experiments on three bench 
mark datasets –(i) Temperature dataset [43, 44] 
which is a twenty four dimensional data of 37 
samples; (ii) Iris [45] which is a four dimensional 
data of 150 samples distributed over three 
classes; and (iii) 700X3 dataset [37] which is a 
dataset of three dimensions with 700 samples 
distributed over five classes. 
 
Temperature dataset 
Average of daily minimum and maximum 
temperatures of each month from January to 
December covering 37 cities all over the globe 
was considered to be the data with 24 features 
(maximum, minimum of each month for 12 
months). This data can be found in any 
engagement book or dairy.  This data was used 
for clustering [43, 44]. This is a typical pattern 
recognition problem. Several classes are present 
in the data since the data covers many zones 
(tropical, temperature, equatorial, frigid etc).  
If we process all the 37 cities with the data of 
each month as a batch or a chunk, then the cities 
will change their classes in the subsequent 
stages of learning, which requires splitting of 
knowledge packets as well as to address the 
order effects [39]. Hence in this study, we are not 
considering the cases where samples will be 
changing their classes over a period of time. For 
example, a child moves from the class childhood 
to adult over a period of time; a seed changing its 
class to plant/tree over a period of time and so 
on. In this study, for the present temperature 
dataset we assume that all the details 
(temperature of 12 months) of the Asian cities are 
available at one point of time, all European cities 
at another point of time and so on.  
From the entire data set, with the DBSCAN 
parameters MinPts set to 2 and Eps set to 25, we 
obtained 7 clusters out of which 3 clusters of one 
element each (samples that have been marked 
as outliers are considered as a cluster of one 
element each with a standard deviation of zero). 
Further as explained earlier, the data has been 
divided into 4 batches. Three batches to have 9 
samples each and one batch to have 10 
samples. Threshold for merging of batches is set 
to 0.5. The details of the number of clusters, 
outliers at each stage, number of unmerged 
clusters are shown in Table V. 

Table VI gives the summary of deviation of 
knowledge parameters of all the seven 
knowledge packets. Since the number of features 
is more, the average deviation has been 
projected. Since all the elements of the 
knowledge packets 4, 5, 6 and 7 remain same 
the deviation is at its lowest level. However, since 
some of the elements of other knowledge 
packets have got interchanged with that of the 
originals, the deviation is on a slightly higher side. 
This is because of the fact that once an element 
is moved to a packet, in the next batch of 
samples some elements may not get the desired 
MinPts required for the DBSCAN clustering 
algorithm and may remain as outliers. Only at the 
final stages of merging, these points may merge 
with the nearest packet resulting in some 
deviation. 
 
IRIS data [45] 
The standard iris dataset [45] has150 points in 4-
dimensional space. First 50 samples belong to 
class 1; the second 50 belong to class 2 and the 
third 50 belong to class 3; Class 1 is clearly 
separable from class 2 and 3, whereas class 2 
and 3 are not separable. This dataset has been 
used extensively to study the behavior of different 
clustering algorithms. With the DBSCAN 
parameters MinPts set to 2, Eps set to 1.4, we 
obtained 3 clusters and zero outliers from the 
entire dataset of 150 samples. As explained 
earlier, the samples were arranged in random 
order and divided into six batches of equal size 
(25 elements each) and processed the batches in 
sequential order to simulate the temporal arrival 
of data. Threshold for merging of batches set to 
0.065. 
Details of the number of clusters, outliers at each 
stage, number of unmerged clusters are shown in 
Table VII. Dynamic merging of the nearest 
batches yields three knowledge packets. Table 
VIII gives the summary of average deviation of 
knowledge parameters of all the three knowledge 
packets. Since Packet 1 is clearly separable, we 
got the minimum deviation. 
 
700X3 Dataset [37] 
This dataset has 700 elements with 3 features. 
There are five classes with 140 samples in each 
class. First 140 samples belong to class 1, next 
140 belong to class 2 and so on. To get the clear 
separation of classes all the three parameters are 
mandatory. This dataset has been used as a 
regression line symbolic sample set and has 
been established that the first two principle 
components are good enough to classify this 
symbolic dataset [37].  With the DBSCAN 
parameters MinPts set to 2, Eps set to 6, we 
obtained 5 clusters and zero outliers from the 
entire dataset of 700 samples. Further, we have 
randomly arranged the samples and divided them 
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into 7 batches of 100 samples each. We set the 
threshold for merging of batches to 0.3. 
Details of number of clusters, outliers at each 
stage and number of unmerged clusters are 
shown in Table IX. Repeated merging yields the 
five knowledge packets. We have obtained very 
good results with an accuracy of 100% in 
regression line parameters of the knowledge 
packets and are shown in Table X. 
 
Conclusion 
If the requirement is to understand the trend in 
the data as the observations keep arriving in 
case of temporal chunks, then it is necessary to 
extract the knowledge at the arrival of every 
chunk of data and keep augmenting the 
knowledge status with the progress in arrival of 
data chunks in temporal sequence. This warrants 
incremental learning. In fact incremental learning 
is also the best solution since one cannot handle 
the pile of data that could get pooled if one 
desires to employ one-shot learning and further, 
the time gap between the arrival of two 
successive chunks, in many cases should be 
more than enough to complete the processing of 
data of the chunk. However, incremental learning 
has problems in terms of accumulating the 
knowledge and carrying forward the hard data 
samples. A new model of incremental learning for 
generation of batch knowledge and for 
augmentation of knowledge with the arrival of 
subsequent batch of data has been presented in 
this research work. For the purpose we have 
employed DBSCAN procedure to generate 
clusters and Cluster-Histo-Regression is used for 
getting the knowledge packets and Histo-
Regression-Distance is used for incremental 
augmentation of knowledge packets. The 
regression line parameters of the knowledge 
packets obtained by incremental augmentation 
have shown an accuracy of 100% in some of the 
experiments conducted on standard datasets. 
Applications which involve backtracking might not 
be suitable since the batch knowledge is 
discarded once the overall knowledge is updated 
and there is no option to delete the elements 
from the knowledge packets. Further, only one 
level of internal merging could be a drawback of 
the proposed strategy as optimal description of 
the accumulated knowledge at any intermediate 
level may not be clearly visible. 
 
Appendix 
The regression distance measure proposed by 
[36, 37] is summarized below. 
Consider a histogram H with 10 bins; H = {b1, b2, 
b3, b4, b5, b6, b7, b8, b9, b10} where bi is the 
frequency count of the bin centered at Ci. For 
example the corresponding histogram for the 
data say A = {10 30 40 50 40 30 20 20 30 10} is 
as shown in Fig 17. Now a cumulative frequency 
distribution is computed for each of these 10 

centers resulting in the cumulative histogram 
(CH); CH = {cn1, cn2, cn3, cn4, cn5, cn6, cn7, cn8, 
cn9, cn10} where cni = sum (cnk) for k = 0 to i; for 
the histogram of Fig 17, CH becomes {10 40 80 
130 170 200 220 240 270 280} and the 
cumulative histogram is as shown in Fig 18. 
CH is then normalized by dividing cni for i = 1 to 
10 by cn10. Now 10 points are marked on the top 
of each bin in the CH corresponding to the bin 
centers and a first order polynomial is fitted 
across these 10 points to obtain regression line 
with yi ranging between 0 and 1 and xi’s range is 
decided by the minimum and maximum co-
efficient values at a particular scale. The 
regression line fitting is done as shown in Fig 19. 
Distance between such obtained lines can be 
computed by finding the area between the two 
lines as well as by finding the behavior of the two 
lines. The calculation of distances is as shown in 
Fig 20. 
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Table I-   Knowledge parameters for incremental learning 
 

[B i] No. of 
elements 

f1 f2 … fn 
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… 
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n2 
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nk 
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µ  
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L
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Where, µ – Mean;  σ – Standard deviation/Density;   
L – Regression Line in terms of slope and intercept; Cl – Cluster; 
 

Table II- Details of knowledge packets and outliers in PIML from Synthetic data 
 

Batch 
No 

No. of 
elements 

No. of 
outliers  

No. of 
knowledge 
packets 

No. of 
unmerged 
knowledge 
Packets 

No. of knowledge 
packets before 
internal merging 

No. of knowledge 
packets after 
internal merging 

1 
2 
3 
4 
 

1250 
1250+566 
1250+219 
1250+517 

 

566 
219 
517 
299 

 

22 
39 
25 
40 

299 

-- 
15 
06 
10 
17 

22 
(22+15)=37 
(25+6) =31 

(21+10)=31 
(24+17)=41 

22 
25 
21 
24 
29 

 
Table III-  Summary of deviation of knowledge parameters of Synthetic dataset in Partial Instance Memory learning 

 
Knowle
dge 
Param
eter 

Values Packet 1 
f1              f2 

Packet 2 
f1              f2 

Packet 3 
f1              f2 

Packet 4 
f1              f2 

Packet 5 
f1              f2 

µ 
 
 
σ 
 
 
Slope 
 
 
Interce
pt 

Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 

1.0034   0.9966 
1.0060   0.9990 
0.25       0.24 
0.5401   0.4533 
0.5483   0.4556 
1.5         0.5 
0.1428   0.1413 
0.1431   0.1417 
0.2         0.28 
0.4928   0.4971 
0.4915   0.4958 
0.26       0.26 

4.0025   0.9958 
4.0069   0.9911 
0.1         0.4 
0.5393   0.4527 
0.5187   0.4525 
3.8         0.04 
0.2153   0.1412 
0.2147   0.1402 
0.27       0.7 
-0.2883  0.4976 
-0.2880  0.5006 
0.1         0.6 

2.5040   2.4973 
2.5075   2.5009 
0.1         0.1 
0.5400   0.4533 
0.5404   0.4521 
0.07       0.26 
0.2881   0.2870 
0.2880   0.2870 
0.03       1.4 
-0.1706 -0.1675 
-0.1712 -0.1677 
0.35        0.11 

1.0025   3.9958 
0.9989   3.9992 
0.3         0.08 
0.5393   0.4527 
0.5410   0.4538 
0.3         0.2 
0.1427   0.2148 
0.1420   0.2144 
0.4         0.18 
0.4932  -0.2864 
0.4958  -0.2862 
0.5         0.06 

4.0032   3.9965 
4.0039   3.9962 
0.01       0.007 
0.5381   0.4348 
0.5425   0.4449 
0.8         2.3 
0.2152   0.2147 
0.2151   0.2147 
0.04        0 
-0.2882 -0.2864 
-0.2882 -0.2863 
  0           0.03 

 
 

 
Table IV- Comparison of Deviation of Knowledge Parameters in Zero Instance Memory [8] and Partial Instance Memory 

 

Percentage of deviation in knowledge parameters  

Zero Instance Memory Partial Instance Memory 

Knowledge Packet No. Feature 

µ σ Slope Intercept µ σ Slope  Intercept 
1 
 
2 
 
3 
 
4 
 
5 

f1 
f2 
f1 
f2 
f1 
f2 
f1 
f2 
f1 
f2 

1 
5 
2.7 
4 
0 
3.2 
5 
0.75 
1 
1.7 

22 
2 
24 
6.6 
16.6 
8.8 
24 
8.8 
24 
11.6 

0 
7 
4.7 
7.1 
0 
3.4 
7.1 
4.7 
4.7 
0 

0 
4 
6 
0 
0 
11.7 
8.1 
0 
3.4 
3.4 

0.25 
0.24 
0.1 
0.4 
0.1 
0.1 
0.3 
0.08 
0.01 
0.007 

1.5 
0.5 
3.8 
0.04 
0.07 
0.26 
0.3 
0.2 
0.8 
2.3 

0.2 
0.28 
0.27 
0.7 
0.03 
1.4 
0.4 
0.18 
0.04 
0 

0.26 
0.26 
0.1 
0.6 
0.35 
0.11 
0.5 
0.06 
0 
0.03 
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Table V- Details of knowledge packets, outliers in partial instance memory learning from temperature dataset 

Batch 
No 

Number of 
elements 

Outliers  Number of 
knowledge 
packets 

Number of unmerged 
knowledge packets 

Number of knowledge 
packets at the end of each 
batch 

1 
2 
3 
4 
 

9 
10+9 
9+5 
9+5 

 

9 
5 
5 

10 

0 
3 
3 
1 

Not applicable 
00 
01 
00 

00 
03 
04 

04+(10 clusters of one 
element each) 

 
 

Table VI-Summary of deviation of knowledge parameters of temperature data 
Knowledge 
parameters 

Values Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 Pkt 6 Pkt 7 

Μ 
 
 
σ 
 
 
Slope 
 
 
Intercept 

Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 

9.50 
9.40 
1 
3.57 
3.59 
0.5 
0.02 
0.02 
0 
0.33 
0.33 
0 

18.52 
15.10 
18 
4.18 
2.80 
33 
0.02 
0.02 
0 
0.17 
0.22 
29 

26.27 
25.52 
2.8 
3.19 
3.69 
15.6 
0.02 
0.02 
0 
0.07 
0.08 
14.2 

18.88 
18.88 
0 
2.92 
2.92 
0 
0.02 
0.02 
0 
0.15 
0.15 
0 

10.45 
10.45 
0 
0.00 
0.00 
0 
0.01 
0.01 
0 
0.33 
0.33 
0 

18.50 
18.50 
0 
0.00 
0.00 
0 
0.02 
0.02 
0 
0.20 
0.20 
0 

10.45 
10.45 
0 
0.00 
0.00 
0 
0.01 
0.01 
0 
0.33 
0.33 
0 

 
Table VII-Details of knowledge packets, outliers, for iris dataset 

Batch 
No 

Number of 
elements 

Outliers  Number of 
knowledge 
packets 

Number of unmerged 
knowledge packets 

Number of knowledge 
packets at the end of each 
batch 

1 
2 
3 
4 
5 
6 
 

25 
25+2 
25+0 
25+0 
25+0 
25+0 

2 
0 
0 
0 
0 
1 

2 
3 
3 
3 
2 
2 

Not applicable 
01 
01 
01 
00 
00 
 

2 
3 
4 
5 
5 

05+(1 knowledge packet 
of one element each) 

 
Table VIII-Summary of average deviation of knowledge parameters of Iris data 

Knowledge 
Parameters 

Values Packet 1 Packet 2 Packet 3 

µ 
 
 
σ 
 
 
Slope 
 
 
Intercept 

Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 

2.5330 
2.5330 
0 
0.2510 
0.2624 
4.5 
0.0658 
0.0658 
0 
0.4753 
0.4753 
0 

4.1224 
3.9497 
4.1 
0.4662 
0.5661 
21 
0.1055 
0.1017 
3.6 
0.1134 
0.1519 
33.9 

3.2815 
3.2583 
0.7 
0.2724 
0.3237 
18.8 
0.0871 
0.0874 
0.3 
0.2993 
0.2994 
0.03 
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Table IX-Details of knowledge packets, outliers for 700 X 3 dataset 
Batch No Number of 

elements 
Outliers  Number of 

knowledge 
packets 

Number of 
unmerged 
knowledge packets 

Number of knowledge 
packets at the end of 
each batch 

1 
2 
3 
4 
5 
6 
7 

100 
100+0 
100+0 
100+1 
100+0 
100+0 
100+0 

0 
0 
1 
0 
0 
0 
0 

6 
6 
6 
6 
6 
6 
6 

Not applicable 
00 
00 
00 
00 
00 
00 

6 
6 
6 
6 
6 
6 
6 

 
Table X-Summary of average deviation of knowledge parameters of 700 X 3 data 

Knowledge 
Parameters 

Values Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 

µ 
 
 
σ 
 
 
Slope 
 
 
Intercept 

Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 
Actual 
Computed 
Difference (%) 

49.8163 
49.8163 
0 
2.3142 
2.3684 
2.3 
0.0079 
0.0079 
0 
0.1610 
0.1610 
0 

45.1366 
45.1366 
0 
2.1091 
2.1581 
2.3 
0.0067 
0.0067 
0 
0.2591 
0.2591 
0 

40.4568 
40.4568 
0 
1.9041 
1.9505 
2.4 
0.0055 
0.0055 
0 
0.3572 
0.3572 
0 

45.1366 
45.1366 
0 
2.1091 
2.1624 
2.5 
0.0067 
0.0067 
0 
0.2591 
0.2591 
0 

41.4879 
41.4879 
0 
1.9635 
2.0051 
2.1 
0.0094 
0.0094 
0 
0.1481 
0.1481 
0 

 

 
Fig. 1- Initial Dataset 
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Fig. 2- Twenty-Two Clusters of batch B1 

 

 
Fig. 3- Thirty Nine Clusters of B2  

 
 

 
Fig. 4- Thirty Seven Clusters at the end of B2 

 



Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R 

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 

 
69 

 
 

Fig. 5- Clusters at the end of B2 after internal merging 
 
 

 
Fig. 6- Twenty Five Clusters of B3  

 
Fig. 7- Twenty One Clusters at the end of B3 after internal merging  

 
Fig. 8-  Forty Clusters of B4 
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Fig. 9- Twenty Four Clusters at the end of B4 after internal merging 

 
Fig. 10- Twenty Nine Clusters at the end of K4 

 

 
Fig. 11- Final Five Knowledge Packets/Clusters 
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Fig. 12- Percentage of average deviation of knowledge parameters in zero and partial 

 

 
Fig. 13- Average samples maintained in  partial instance memory when the given dataset of 5000 samples is 

divided into 4, 5, 8, 10 and 20 batches of different sizes. 
 
 

 
Fig. 14- Number of hard samples in partial instance memory when the initial dataset of 5000 samples is 

divided into batches of different sizes 
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Fig. 15- Average knowledge packets retained in concept memory in partial instance memory learning when 

the number of batches increased from 5 to 50 in different steps. 

 
Fig. 16- Number of accumulated hard samples in partial instance memory learning when the batch size is 

fixed at 1000 and the number of batches increased from 5 to 20 in different steps. 

 
Fig. 17- A Sample Histogram 

 
Fig. 18- Cumulative Histogram for the histogram of Fig 17. 

 
Fig. 19- Regression Line fitting on a normalized histogram 
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Fig. 20- Distance between two lines 
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