
International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010, pp-53-73

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

A new cluster-histo-regression analysis for incremental learning from
temporal data chunks

Nagabhushan P.
1
, Syed Zakir Ali

1*
and Pradeep Kumar R.

2

*1
Department of Studies in Computer Science, University of Mysore, Mysore, India

2
Amphisoft Technologies Private Limited, Coimbatore, India

Abstract - In scenarios where data chunks arrive temporally, a good algorithm for exploratory analysis
should be able to generate the knowledge and with the next chunk of data arriving, the process should be
the one of just updating online by accumulating the knowledge derived from the recent chunk. Such an
incremental learning process in most of the cases indent a lot of memory requiring to carry all earlier data in
the process of updating the knowledge successively. In this research work we propose to employ a novel
Cluster-Histo-Regression analysis of the chunk to extract the knowledge for the temporal instant and fuse
this knowledge through Histo-Regression-Distance analysis with the already accumulated knowledge. We
have designed a methodology which (i) discards all those data samples from the chunk which have
participated in the knowledge generation process (ii) indents minimum amount of memory to carry the
accumulated knowledge and (iii) proposes to carry forward only those limited data samples (referred to as
hard samples) which could not contribute to knowledge generated at that moment. Knowledge of each
cluster is represented in the form of a histogram for each dimension of the clustered data and is transformed
to regression line for the compact representation of the knowledge. The regression line parameters of the
clusters obtained by incremental augmentation have shown an accuracy of up to 100% for some of the data
sets that are considered for experimentation.
Key words: Zero instance memory learning, Partial instance memory learning, Knowledge generation,
Cluster analysis, Regression analysis, Incremental learning, Incremental augmentation of knowledge

Introduction
Needless to mention that knowledge is generated
through a process of learning from the available
data. Histogram is a better representation of the
knowledge. Clustering is the most important form
of learning in pattern recognition applications. In
traditional learning systems the entire data is
processed at one stretch and hence it is referred
as one-shot learning [1]. If the data is of a huge
size and that it cannot be processed at one
stretch with the available resources, then the
traditional one-stretch learning has to be replaced
by segmenting the data into smaller chunks or
batches and assimilating the acquired knowledge
in a piecemeal way leading to piecemeal
learning. On the other hand, when the availability
of data is intrinsically temporal and when
sufficient quantum of data is already available to
initiate the learning process, waiting for further
data is undesirable and/or impractical because (i)
the time gap required for initiating the processing
of the data increases both in terms of wait time
and one-shot processing time at the end (ii) the
volume of data becomes prohibitively high and
(iii) there should be a need for extracting the
accumulated knowledge as and when the data
chunk is received temporally (such as in trend
analysis); hence one has to move from traditional
one-shot learning to piecemeal learning
temporally. In machine learning parlance, this
type of learning from temporal sequence of
chunks in a piecemeal way is often referred to as
on-line learning [1] [2].
On-line learning systems [2] require two types of
memory – (i) concept memory - memory for
storing and carrying forward the batch

knowledge, which is the description of the
knowledge extracted from each chunk of data
and (ii) instance memory - memory for storing the
processed data and memory meant to
accommodate the incoming chunk.
Clustering is the most established method to
learn form chunks of data. In this research,
statistical summary of each of the clusters (such
as number of elements, mean, standard
deviation, histogram etc) obtained from the chunk
of data is provided as a knowledge packet. In the
process of learning on-line using clustering, if the
system retains a knowledge packet for each of
the cluster of every chunk, the concept memory
grows continuously with the addition of new
clusters from the subsequent chunks of data. In
this case, merging of knowledge packets towards
the end will be a cumbersome process. Similarly,
if the online systems retain the data of each
chunk in the instance memory, it also leads to a
continuous growth of instance memory; which
increases the computational overheads and will
act as a bottleneck for the continuous flow of
chunks. With the increase in volume of data,
there is a strong need for some learning system
which (i) always retains only one knowledge
structure in the memory for assimilating all the
fragmented facts (batch knowledge) to get an
overall knowledge and (ii) does not re-indent the
past data, but which expects that the new
process of learning should become more
intelligent.
To incorporate the concepts of incremental
learning in data mining, Michalski [3] has
observed that provision should be made for
inserting background knowledge and knowledge

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 54

about the goal into the knowledge generation
process and has called the process as
Incremental Knowledge Mining. In [4], the
following model for the knowledge generation
process has been proposed:
DATA + PRIOR_KNOWLEDGE + GOAL �
NEW_KNOWLEDGE
Specifying the GOAL makes the learning process
supervised or more precisely directed learning.
Since in many applications the goal may not be
known apriori and since learning in an
unsupervised scenario is more demanding [5-7],
we propose to adopt clustering mechanisms for
learning.
In machine learning process, knowledge updation
via incremental learning is achieved by three
forms [2] depending on the volume of data used
or reprocessed or available for reprocessing from
the knowledge generated in earlier stages. They
are: (i) Zero instance memory learning, where
none of the previously processed data are re-
called or re-indented (ii) Full instance memory
learning where all the past data are retained and
re-processed and (iii) Partial instance memory
learning where some of the past data which are
likely to play a vital role in the learning process
are carried forward for further processing. Zero
instance memory learning is the most optimal in
terms of space requirements and in our recent
work [8], an attempt to achieve reasonably good
learning through Zero instance memory learning
has been made. Full instance memory learning is
not desirable because of the computational
overheads [2] [3]. Next is the Partial instance
memory learning (PIML), which we would like to
explore to greater depths in this research work
since there has been relatively not much work
done on this aspect by the machine learning
community [2] as also in Data Mining community.
The important issue that is being addressed in
PIML is devising strategies to select samples
from the input stream which can be of use in
subsequent stages of learning [2]. Another
important issue which we feel important is
devising strategies to store the concept
descriptions, which minimize the concept
memory and thereby reduce the computational
overheads.
Various schemes that have been explored for the
selection of samples to be carried forward are: (i)
representative samples [9,10] (ii) consecutive
sequence of samples over a fixed or changing
window of time [11,12]; (iii) extreme samples that
lie on the boundaries of concept descriptions
[13,14]. In all these schemes, the samples, which
describe the knowledge, are also being carried
forward in partial instance memory. These
samples increase continuously till all the samples
are processed which directly increase the
requirement of partial instance memory. Our
contention is that once the concepts/knowledge
of the given data is extracted, there will not be

any need for such samples. Our next question is
that can we not keep the outliers separate from
the concept descriptions so that the density of the
concepts becomes stronger and the outliers can
be forwarded to subsequent stages? In fact, we
require only those data samples which could not
participate in the knowledge generation process,
specifically with regard to temporal data chunks.
Such samples may be referred as hard samples.
Moreover, the hard samples can get merged with
the succeeding chunks of data and the quantum
of hard samples will remain minimal at each
stage of learning, thus minimizing the
continuously growing requirement of partial
instance memory.
Various attempts to extract knowledge
incrementally through classification and
clustering have been made in [15-23]. Knowledge
has also been extracted in the form of
association rules [24–27]. Another way of
knowledge extraction is through dimensionality
reduction [28]. However, none of the above
works have concentrated on incremental
agglomeration of knowledge. For example, to get
the overall knowledge about an area during
surveillance by aircraft, image mosaic is being
done at physical level and the information is
collected from the overall mosaic image [29].
Our idea is that if the time gap between the
arrivals of two image frames can be utilized to
extract the knowledge contained in image frame
and if this knowledge could be updated with the
knowledge of the next image frame, the burden
of mosaicing the image frames physically and
processing the bigger image frame can be
eliminated. At each stage, only the accumulated
knowledge up to the end of the previous image
frame should be utilized and all the previous
image frame(s) may be dropped.
For incremental learning using clustering, an
algorithm called Incremental DBSCAN has been
proposed [16]. In this method, updates to the
database are processed separately. It is
observed that whenever an object is being
inserted into an existing cluster, the objects
already contained in that cluster can change their
property (for example, core objects may become
non core objects and vice versa; border objects
may become noise objects and vice versa); in
this connection the objects present in the cluster
are assumed to be intact and are accessible,
which increases the partial memory
requirements. Further, the incremental DBSCAN
cannot withstand the loss or unavailability of the
objects of a cluster.
Some inspiring works have been reported from
data stream point of view [30, 31]. The data
stream is assumed to be divided into chunks of
manageable sizes. The first chunk of data is
processed offline by applying k-means clustering
algorithm. The number of clusters obtained
initially from the first chunk is made proportional

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

55

to the available memory that means that the
initial number of clusters will be at maximum level
and are significantly larger than the natural
number of clusters in the data. For each of the
data sample that arrives from the subsequent
chunk, a check is made for absorption into any of
the existing clusters. If merging is accepted, then
the data sample is merged otherwise the oldest
cluster (which has not got updated from a long
time) is deleted to make way for the new cluster
to be created with this sample. This process is
nothing but merging of data with the existing
knowledge. However, this mechanism of
updating knowledge suffers from the following
drawbacks. (i) Clusters generated at the initial
stages could be sparse (ii) Subsequent learning
process becomes biased by the clusters
generated from the initial chunk of data (iii)
Deleting the oldest cluster is nothing but loosing
some important knowledge forever which
otherwise could be of importance for the future
data (iv) Clear view of stagnancy cannot be
detected to enforce stopping criteria for the
continuous learning process that is when there is
no significant change in the generated
knowledge, there is no necessity of continuing
the learning process.
 A new clustering algorithm called LSEARCH has
been proposed to learn from the stream of data
[31]. The method of handling the data stream is
similar to the one proposed earlier [30]. But,
instead of specifying the number of clusters in
advance, the authors propose a mechanism
called facility location to find out the optimal
number of clusters. In this method, k-medians are
assigned initially and the quality of clustering is
measured by the sum of squared distances of
data points from their assigned medians.
The data stream methods proposed in [30] and
[31] assume the steady arrival of data and they
also assume that the time gap between the
arrivals of two data samples is sufficient for
getting the knowledge updated. If the same
concept can be extended to the chunks of data,
the time gap between the arrivals of two
consecutive chunks should be enough to perform
mining and knowledge integration. In [30], when it
is assumed that the data stream can wait till the
first chunk is processed, why the stream cannot
wait for other chunks? If it can wait, we can
overcome the necessity of using online clustering
algorithms for learning as every chunk could be
processed offline and only agglomeration of
knowledge need be done online. Since in many
practical scenarios, the number of clusters is not
known in advance, a clustering algorithm which
avoids the specification of number of clusters in
advance could provide dense clusters. Further,
there should be some mechanism in the
clustering algorithm to separate outliers as they
greatly affect the quality of clusters.

The density based spatial clustering of
applications of noise (DBSCAN) provides a
mechanism to separate outliers from the data
[15, 32-34]. It is argued that DBSCAN is one of
the most efficient algorithms on large databases
and is applicable to any database containing data
from metric space to a spatial database or to a
WWW-log database. Any insertion(s)/deletion(s)
of object(s) affect the current clustering only in
the neighborhood of the object because of the
density based nature of DBSCAN. It is also clear
that DBSCAN requires only one scan to cluster
the objects. Because of these advantages, we
are motivated to use DBSCAN algorithm for local
cluster analysis in the present research.
However, DBSCAN is sensitive to its parameters
MinPts and Eps. These parameters must have to
be managed properly with the background
knowledge [2] during the knowledge generation
process.
For the other issue of storing the concept
descriptions (knowledge parameters), which
minimizes the concept memory and
computational overheads, [15, 30] have
suggested Linear sum of elements (LS), Sum of
squares of all elements (SSQ), Number of
elements in a cluster as the knowledge
parameters. It is observed that these parameters
are the compact representation of the data and
are sufficient for calculating the measurements
required for clustering decisions. Undoubtedly,
these parameters are good for spherical shaped
clusters. However, for clusters of elongated and
irregular shapes, we have to identify proper
knowledge parameters. It is noted that only
histogram has the generic ability to effectively
characterize most of the data types and the
internal pattern of distribution of elements within
the clusters can be easily depicted by histograms
[35]. Hence we used histograms to represent the
concept descriptions. It is observed that
algorithms for producing histograms have
parameters such as number of bins and bin width
[36, 37]. It is required to have same number of
bins and same bin width for all datasets or all
clusters within a dataset for the effective
characterization of data into histograms. Hence
the data has to be normalized to maintain the
histogram spread between 0 and 1 and the
number of bins could be fixed as 10 or 20
depending upon the required precision. Spread of
the histogram is divided by the number of bins to
get the bin width. It is noted that storage of
histograms requires memory for number of bins,
bin width and memory for the details of each bin.
It is further shown that histograms can be easily
converted to regression lines. Regression line is
also a powerful knowledge representative which
holds more details about the data in a
compressed form which requires only two
parameters - slope and intercept. Since we
propose to have a histogram for each feature or

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 56

each dimension of the clustered data, we opted
to have a regression line instead of a histogram
which reduces the memory requirement.
Ultimately, because of linear regression, the
parameters for histograms such as bin width,
number of bins etc will not be of concern. Proofs
have also been provided to show that regression
line is a condensed form of knowledge
representation [38]. Moreover, suitability of
regression analysis by dividing the data into
smaller blocks and finally combining the
regression results has been established by Fan
et al [38], though it is not for temporal data.
Hence, we have employed Cluster-Histo-
Regression analysis in this research work. For
comparison between the knowledge packets,
distance between the corresponding histo-
regression lines has to be measured and for this
we employed Histo-Regression-Distance [36, 37].
To make it complete, a glimpse at the conversion
of histograms to regression lines through an
intermediate stage of constructing its cumulative
histogram and finding distance between
regression lines as proposed by [36, 37] is given
in Appendix.
As discussed earlier, we concentrate here on
achieving incremental learning in the context of
data arriving temporally where, incremental
learning is the only possibility or a better
alternate. Further we presume that the data
which is arriving temporally is computationally
manageable and can be easily processed at one
step without the requirement of splitting. If the
chunk becomes voluminous then it has to be split
internally, the problem of different orders of
processing the split chunk may crop up as the
different orders of processing may lead to
different results and we may face the problem of
order effects [39] and this aspect requires an
extensive study, which is being pursued by us.
Since temporal datasets are not available or not
so easily available, various methods of simulation
of temporal datasets have been explored in [19,
32, 38]. We are inclined to use the one explained
in [19] where an offline situation is easily
converted to an on-line situation by dividing the
given data into smaller batches or chunks and
processing these batches one by one to simulate
the temporal behavior. Before dividing the data
into chunks, we randomly arranged the samples
of a given dataset and then divided them into
chunks of manageable sizes.
The proposed model for incremental learning
through clustering using partial instance memory
in a nut shell can be formulated as follows:
(i) The hard samples from the just previous

chunk which are retained in partial
instance memory are appended to the
data of current chunk. DBSCAN
clustering mechanism is applied on the
data to generate knowledge and the
overall knowledge is updated; hard

samples of the present chunk are sent
to partial instance memory;

(ii) At the end of arrival of all chunks,
knowledge of each of the hard sample
stored in partial instance memory is
extracted and is updated with the overall
knowledge.

As an alternative for comparison, we have
retained all the hard samples without mixing them
with the fresh incoming chunks and processed
them at the end after arrival of all chunks.

The Proposed approach
During incremental progress, when a batch or
chunk of data arrives, learning is achieved by (i)
clustering (ii) extracting the knowledge of clusters
to obtain the batch knowledge and (iii) updating
the overall knowledge which is maintained as
knowledge packet(s) in the concept memory. The
batch knowledge as well as the given chunk of
data samples are discarded except those data
samples which have been identified as hard
samples during the knowledge generation
process (clustering). During the process of
updating the overall knowledge, the knowledge
packets of the batch knowledge might either get
absorbed in the existing knowledge packet(s) or
might get added as entirely new knowledge
packet(s) resulting in accumulation of knowledge
packets into the concept memory. If a knowledge
packet from the batch knowledge gets absorbed,
the corresponding knowledge packet which has
absorbed the packet will grow and the distance
between the current knowledge packet and the
existing knowledge packets get reduced forcing
the knowledge packets of the overall knowledge
to get merged further. The continued addition of
new knowledge packets into the concept memory
and merging of the nearest knowledge packets
could cause uneven distribution of knowledge
requiring splitting of knowledge packet(s) which
requires access to the past data which is already
discarded. Hence, there should be some
mechanism at the time of merging itself which
can avoid splitting of the knowledge packet at a
later stage.
In case of data arriving temporally, a chunk of
data would be available at the end of some
interval of time. From an i

th
 data chunk or batch

[B]i, i
th
 knowledge set [K]i can be derived. Sooner

the [K]i is available, it has to be merged with the
existing knowledge [Knowledge]i-1 which is the
one updated up to the end of (i-1)

th
 stage; then,

[Knowledge]i  ƒ([Knowledge]i-1, [K]i);
where,
[Knowledge]i-1  ƒ([Knowledge]i-2, [K]i-1),

[Knowledge]i-2  ƒ([Knowledge]i-3, [K]i-2) and so
on.
Finally overall knowledge is:
[Knowledge]  [Knowledge]n if n

th
 stage is the

last stage.
It has been shown that the knowledge of any kind

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

57

of data (generic data) can be conveniently
represented by a histogram and the knowledge
assimilated in histograms can further be
compressed by converting them to regression
lines [36, 37]. We have identified number of
elements in each cluster, mean (µ), standard
deviation (σ) and regression line as knowledge
parameters. The number of elements in each
cluster will allow us to keep the knowledge
packets in normalized form and simplify the
process of obtaining the overall knowledge
especially while merging the knowledge packets.
Though the presence of regression line nullifies
the requirement of µ and σ, we have retained µ
for classical requirements and σ for estimating
the density for the predefined condition of
merging the knowledge packets, which is
discussed in detail in the following section.
Regression line effectively represents the
knowledge of both spherical as well as non-
spherical clusters. These parameters are
sufficient for easier assimilation of knowledge
packets and overcome the drawbacks of
maintaining the samples that lie on the
boundaries of concept descriptions [13] as wells
as retaining the consecutive samples over a fixed
and changing window of time [11]. For an n-
dimensional data space, if the current batch [B]i
shows up ‘k’ knowledge packets [Cl1] [Cl2]… [Clk],
then knowledge structure [K]i is as shown in
Table I.
Therefore, a knowledge packet in our research is
composed of number of elments in a cluster;
mean, standard deviation and regression line
(represented by slope and intercept) of each
dimension of the cluster depending upon the
number of dimensions in the data.

The new computational model
Here we present the model for incremental
learning. In our earlier work [8], a similar model
for achieving incremental learning without re-
indenting the past data leading to the concept of
zero-instance memory learning [2] was proposed.
The basic model for generation of knowledge of
an i

th
 chunk/batch [B]i is:

[DATA]i  ([DATA]i U [hard samples] i-1) --- (1)

[K]i + [hard samples]i  [DATA]i --- (2)
The basic model for updation of knowledge after
the processing of i

th
 batch [B]i is:

[Knowledge]i  ƒ([Knowledge]i-1, [K]i) --- (3)
where, [K]i is the set of knowledge packets
obtained by the local cluster analysis on the
chunk/batch [B]i and [Knowledge]i-1 is the set of
knowledge packets obtained by the incremental
agglomeration up to the end of (i-1)

th

chunk/batch.
Let us assume that updated [Knowledge]i-1 has ‘p’
knowledge packets up to the end of (i-1)

th
 batch.

[Knowledge]i-1 = {[CL1], [CL2], … [CLP]} ---(4)
where, [CLX] = {µX, σX, LX};

Let us assume that the present batch of data [B]i
has resulted into k number of knowledge packets.
[K]i = {[Cl1], [Cl2] … [Clk]} --- (5)
where, [Clj] = {µj, σj, Lj};
The entire process of representation of
knowledge packet in terms of histogram,
transformation of histogram to normalized
histogram then to cumulative histogram and
subsequently to normalized regression line and
finding distance between regression lines is
presented in detail [36] [37]. For the sake of
completeness, a summary of the regression
distance measure is presented in Appendix.
The creation of [Knowledge]i is performed by
updating [Knowledge]i-1 based on the relation (3).
To enable this it is required to find the nearest
knowledge packets one from [Knowledge]i-1and
the other from [K]i. The nearest two knowledge
packets [CLX] Є [Knowledge]i-1 and [Clj] Є [K]i are
accomplished by measuring the distance
between the corresponding lines of regression LX
Є [Knowledge]i-1 and Lj Є [K]i. If two clusters [CLX]
and [Clj] can be merged then the proposed
merging operation will result in:

new_µ =














+

+

Xj

XXjj

nn

nn)*()*(µµ
 --- (6)

new_σ =

)/()))(*())(*((
2222

XjXXXjjj nndndn ++++ σσ --(7)

where, dj
2
 = (µj – new_µ)

2
 ; dx

2
 = (µx – new_µ)

2
;

new_L in terms of slope and intercept is obtained
as follows:
new_S = ((nj * Sj) + (nx * Sx)) / (nj+nx) --- (8)
new_I = ((nj * Ij) + (nx * Ix)) / (nj+nx) --- (9)
where, Sj is the slope of the line Lj and Sx is the
slope of the line Lx ; Ij is the intercept of line Lj and
Ix is the intercept of line Lx.
Proofs for these formulae are available in
statistics [41]. These details are also reported in
[8].
The merging is allowed based on the following
criteria:
Let q1 = (new_σ – σj); and let q2 = (new_σ – σX);
then q = min (q1, q2);
Merging of the two knowledge packets can be
done if (q < = predefined range); Here the
predefined range is the prior knowledge [4] about
the density of the dataset.
At the end of this procedure [Knowledge]i is
created which even if no merge happens then
results in (p+k) packets of knowledge. Upon
complete merging of the packets the resulting
number of knowledge packets produced is
min(p,k). Therefore the number of knowledge
packets will be between [min(p,k) and (p+k)]. In
fact, it is possible that the number of knowledge
packets at each level could be less than the
number of knowledge packets as worked out
above, because of induction of continued
merging process. We have considered the

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 58

natural merging only at one level because of the
implementation constraints as well as to prevent
the possibility of over merging causing a
knowledge packet to get split later.
The above process of updating continues till all n
batches are processed. Finally [Knowledge] 
[Knowledge]n = ƒ([Knowledge]n-1, [k]n). However,
the process of merging has to be continued to get
the optimal number of knowledge packets at the
end. Finally, the process is terminated when the
desired number of knowledge packets are
produced or the density of the proposed merge
becomes greater than the predefined threshold.
While designing the new model, we have also
stressed upon retaining the hard samples of the
previous chunk in the partial instance memory.
i.e., at any stage of combining [Knowledge]i-1 with
[k]i, the hard samples of [B]i-1 will be utilized. We
can totally reject the outliers or hard samples, but
this will result in loss of information which may
lead to inconsistent learning. At every stage, the
partial instance memory is emptied and the hard
samples present in partial instance memory are
appended with the next immediate chunk of data
samples for further processing. This allows the
outliers or hard samples of each batch to
participate in the knowledge generation process
resulting in more accurate final knowledge. The
hard samples of the last batch are divided into
packets of single sample and are processed for
merging.
As mentioned earlier, for the sake of comparative
study, instead of processing the hard samples
with the next immediate chunk, we have retained
all the hard samples and processed them at the
end. For this, the basic model for generation of
knowledge of an i

th
 batch [B]i is:

 [K]i + [hard samples]i  [DATA]i --- (10)

[hard samples]i  [hard samples]i U [hard

samples]i-1 --- (11)
It should be observed that, a suitable strategy is
presented for merging the knowledge packets,
but not for splitting a knowledge packet. Our
argument is that since merging operation is
prevented under unfavorable conditions, the
question of subsequent splitting does not arise.

Algorithm
Algorithm: Partial Instance Memory learning
using clustering
Input: Temporal flow-in of data in terms of
batches; DBSCAN parameters MinPts and Eps
Output: Clusters of data and their knowledge;
and outliers, if any.
Let us assume that a batch of data samples is
available at i-

th
 time instant.

Consider the first/initial batch of data; set the
parameters Eps – the radius that delimitate the
neighborhood area of a point and MinPts – the
minimum number of points that must exist in the
Eps-neighborhood. Apply the DBSCAN clustering
algorithm [34] to find natural groups/clusters in

the given data. Outliers/hard data are to be
retained and appended to the next batch of data;
let us say ‘p’ natural clusters are obtained. The ‘p’
clusters are the ‘p’ knowledge packets.

1. do for all the clusters of initial batch
2. extract_knowledge to obtain ‘p’

knowledge_packets;
3. end for
4. do for all the knowledge packets of the initial

batch
5. find_distance between the

knowledge_packets and record them in the
distance_matrix;

6. end for
7. do for the batches of data arriving

sequentially (Datat for t = 2 to n)

8. data_to_be_processed = (Datat U

hard_samplest-1)
9. Apply the same clustering algorithm on

data_to_be_processed; let us say ‘k’ natural
clusters are obtained.

10. do for the ‘k’ natural clusters obtained
11. extract_knowledge;
12. find_distance between this packet of

knowledge to all the knowledge_packets
available in the initial batch;

13. Record the packet number which shows the
minimum distance; the packet number is
destination_pkt_number and the minimum
distance is min_val;

14. In the distance_matrix, search the
row/column represented by the
destination_pkt_number for a value less than
min_val.

15. if found
a. Move this knowledge packet as an additional

knowledge packet of the initial batch; this
increases the knowledge_packets of the initial
batch by one.

b. Re-compute the distance_matrix;
16. else

/* Check density_of_the_proposed_merge;*/
if density_of_the_proposed_merge is in a pre-
defined acceptable range
(i) Merge this knowledge packet with the
knowledge packet of the initial batch which is
represented by the destination_pkt_number;
(ii) Re-compute the distance_matrix;
else
(iii) Move this knowledge packet as an additional
knowledge packet of the initial batch; this
increases the knowledge_packets of the initial
batch by one.
(iv) Re-compute the distance_matrix;
end if;
17. end if
18. end for;
19. end for;
20. do while no. of knowledge packets > Goal
21. find the packets with minimum distance;

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

59

22. if they can be merged as per the
density_of_the_proposed_merge, merge
them;

23. reduce the number of knowledge packets by
one;

24. Re-compute the distance_matrix;
25. else set minimum distance to a very high

value;
26. end if;
27. end for;
28. end Partial Instance Memory Learning
Algorithm: extract_knowledge
1. do for each cluster
2. keep the number of elements as knowledge;
3. do for each dimension of cluster
4. get the mean (µ); get the standard deviation
(σ);
5. normalize the data values and fix up the
number of bins.
6. construct a histogram; Obtain a cumulative
histogram; Normalize the cumulative histogram
and fit a first order polynomial to the normalized
cumulative histogram to obtain a regression line
(L);
7. end do;
8. end do;
9. return µ, σ, L;
10. end extract_knowledge;
Algorithm: find_distance
/* from a packet of knowledge to all other packets
of knowledge */

1. distance[1] = 0;
2. do for know_pkts = 2 to p
3. initial_distance = 0;
4. do for dimensions = 1 to d
5. dist[dimensions] =

distance_between_lines(line[dimensions
], pkt[1], line[dimensions],
pkt[know_pkts], n1, n2);

6. initial_distance = initial_distance +
dist[dimensions];

7. end for
8. distance[know_pkts] = initial_distance;
9. end for;
10. return distance;
11. end /* find_distance*/

Algorithm: distance_between_lines(line[],
pkt[1],line [], pkt[], n1,n2)
/* n1 = no of elements in line 1 and n2 = no of
elements in line 2 */

1. If two lines do not intersect
2. dist1=distance between the first end

points of given lines;
3. dist2=distance between the second end

points of given lines;
4. else
5. get the point of intersection of the two

lines (Xi,Yi);
6. dist1= (distance between the first end

points of given lines * Yi);
7. dist2= (distance between the second

end points of given lines * (1- Yi));

8. end /* if */
9. area_bw_lines = (dist1 + dist2)/2;
10. len1 = length of line1;
11. len2 = length of line2;
12. behavior_of_lines = abs(len1 – len2);
13. distance_bw_line1_and_line2 = (α *

area_bw_lines) + (1- α) *
behavior_of_lines;
/* α is a tunable parameter between 0
and 1 */

14. return distance_bw_line1_and_line2;
15. end /* distance_between_lines */

Complexity Analysis
(i) Time complexity of DBSCAN clustering
mechanism is O(nlogn) [16, 34, 42] where ‘n’ is
the number of samples in each chunk; If there
are ‘k’ number of batches, then the time
complexity becomes k * (nlogn);
(ii) Extracting knowledge of each cluster:
If there are m clusters in a batch and if there are
d dimensions of each cluster, then for extracting
knowledge of each batch, the time required is
O(md);
For k number of batches, the time required to
extract knowledge is k * (md)
(iii) Finding distance between knowledge
packets:
(a) If there are m knowledge packets obtained
from the initial batch, time required to find
distance between them is m (m-1)/2;
(b) Finding the distance between each packet of
knowledge of the subsequent batches with the m
knowledge packets of the initial batch:

1. Finding distance between a packet of
knowledge to m knowledge packets of
initial batch is 1* m; If there are m1
knowledge packets of the subsequent
batch, finding distance between these
m1 knowledge packets with the m
knowledge packets of the initial batch,
the time required is m * m1;

2. Re-computing the distance matrix
whether the packet of knowledge of the
subsequent batch is merged with the
initial batch or the packet of knowledge
is moved as an additional knowledge
packet of initial batch is m (m-1)/2;

3. There are k-1 number of subsequent
batches, then the distance between
each packet of knowledge of the
subsequent batches with the m
knowledge packets of the initial batch is:
[(k-1) * (m * m1) * m (m-1)/2];

In all, the complexity is: m (m-1)/2 + [(k-1) * (m *
m1) * m (m-1)/2];
(iv)Time for final merging of knowledge packets:
The dominant operation in this process is the re-
computing of the distance matrix; hence the time
required is m (m-1)/2;
The Overall complexity is:

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 60

[k * (nlogn)] + [k * (md)] + [m (m-1)/2 + [(k-1) * (m
* m1) * m (m-1)/2]] + [m (m-1)/2];
� O (m

3
n);

It should be noted that m is the number of

knowledge packets. Further since m n= , we

can assume that m is always bound by a
constant. In practical scenario it is also true that
one could be interested in designing predefined
number of knowledge packets only. Thus the

above expression may be simplified to O (λ n)

where, λ is in terms of m. This implies that the

scan through the data samples is only once and
the time of computation also depends upon the
knowledge packets contained in the data space.

An Illustrative Example for Partial Instance
Memory Learning using clustering
The synthetic dataset has been used for clear
understanding and a visual demonstration of the
proposed method. The synthetic dataset of 5000
points in a 2D space distributed over five classes
is shown in Fig 1. Similar dataset has been used
in to simulate the stream of data [31]. For
exhaustive profile analysis, we have also
conducted experiments on synthetic dataset by
(i) keeping the number of samples in a batch
constant and varying the total number of samples
(ii) keeping the total number of samples constant
and varying the number of processing batches.
Also for supervised experimentation we have
varied the number of knowledge packets present
in the overall data mass.
We randomly arranged the samples of the
dataset and segmented the dataset into four
batches of equal size and processed the four
batches one at a time in a sequential order
simulating the temporal arrival of data. For
DBSCAN, Eps was set to 0.25 and MinPts was
set to 20; the threshold for merging of batches
was set to 0.15. Batch B1 was considered as the
initial batch. Upon applying DBSCAN, we
obtained 22 clusters as shown in Fig 2.
In Fig 2, the first row indicates cluster numbers 1
to 7, the second row indicates 8 to 14, third row
indicates 15 to 21 and the last row cluster
number 22. The same representation scheme is
followed for other figures which represent the
clusters. Knowledge of all these clusters was
extracted to obtain the 22 knowledge packets.
Out of the 1250 elements of batch B1, 566
elements were marked as outliers (because of
the stringent parameters Eps and MinPts of
DBSCAN) and appended to the second batch B2
as per the requirement of our proposed method
of PIML. From this batch B2, we obtained 39
clusters as shown in Fig 3. Knowledge of these
clusters was extracted to obtain 39 knowledge
packets.
Out of the 39 knowledge packets obtained from
this batch, 24 got merged with some of the
knowledge packets of batch B1, which is now K1,

using the Histo-Regression-Distance [36, 37].
The fifteen unmerged knowledge packets of B2
are appended to the concept memory which
brings the total number of knowledge packets to
37 (22 + 15) at the end of batch B2. The clusters
represented by these knowledge packets are
shown in Fig 4. As the data samples of these
clusters are assumed to be not available, just for
visualization, these clusters have been projected
here.

Because of the merging of 24 knowledge packets
into some of the knowledge packets of K1, the
knowledge packets of K1 have grown and may
attract the existing knowledge packets forcing
internal merging of the knowledge packets. At the
first level of internal merging of the knowledge
packets at the end of B2, the number of
knowledge packets were reduced to 25 which is
now K2 and the clusters of these knowledge
packets are shown in Fig 5.
Clusters obtained by batch B3 are shown in Fig 6.
From these clusters, knowledge packets are
obtained.
Nineteen knowledge packets of this batch got
merged into some of the existing knowledge
packets of K2. The six unmerged knowledge
packets of this batch are appended to the
concept memory, which brings the total
knowledge packets to 31 (25 + 6) and after
internal merging there are 21 knowledge packets
(after B3) which is now K3 and the corresponding
clusters of the knowledge packets of K3 are
shown in Fig 7.
Similarly, the clusters obtained from B4 are shown
in Fig 8 and the corresponding knowledge
packets are obtained. As usual, some of the
knowledge packets got merged into the existing
knowledge packets of K3 and after internal
merging (because of the growth in knowledge
packets), we obtained twenty four knowledge
packets and the corresponding clusters are
shown in Fig 9. Each hard sample of B4 is
considered as an individual knowledge packet
and is merged into the existing knowledge
packets. Many knowledge packets got merged
into the knowledge packets of K4 and these
knowledge packets merged further resulting in 29
knowledge packets; the clusters of these
knowledge packets are shown in Fig 10. In this
figure, we can easily observe the five dominating
clusters.
Dynamic merging of the nearest knowledge
packets repeatedly until the desired number of
knowledge packets are obtained or the desired
threshold is met, yields the five knowledge
packets. The corresponding clusters of these five
knowledge packets are shown in Fig 11.
The details of the number of knowledge packets,
number of hard samples at each stage, and
number of unmerged clusters are shown in Table
II.

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

61

From Table II, it is clear that even though at each
stage few knowledge packets are getting added,
the overall number of knowledge packets is
getting reduced by the internal merging operation
and thus minimizing the concept memory. Also,
the outliers of one stage are getting merged with
the succeeding batch, thus reducing the
requirement of partial instance memory.
Table III gives the summary of deviation of
knowledge parameters of all the five knowledge
packets. It is clear that a deviation of less than
1% in almost all the knowledge parameters is
negligibly small considering that the knowledge
has been gathered incrementally which should
have suffered a significant estimation error.
Table IV shows the comparison of deviation in
knowledge parameters with zero instance
memory learning [8] and the present partial
instance memory learning. Since the hard
samples at each stage of learning was assumed
unavailable in zero instance memory learning,
the deviation in knowledge parameters is higher.
Still this deviation can be considered as minimal
since a lot of time and space could be saved.
Further, if the number of hard samples at each
stage would have been zero, then the results
obtained by zero instance memory learning
would have been same as partial instance
memory learning.
The percentage of average deviation in
knowledge parameters of zero and partial
instance memory learning is shown in Fig 12.
It is clear that there is significant improvement in
the final knowledge parameters in partial instance
memory when compared with zero instance
memory [8]. This is at the cost of additional
memory for maintaining the hard samples and
computational time for reprocessing of hard
samples at each stage of learning. An average
deviation of less than 1% in the knowledge
parameters of partial instance memory is meager
when the knowledge is fused in a piecemeal
fashion. This indicates the power of histogram
based regression line as a parameter for
knowledge representation and the suitability of
histo-regression-distance [36, 37] for incremental
learning through clustering.
As mentioned earlier, instead of processing the
hard samples of a chunk with samples of the next
immediate chunk, if all the hard samples are
accumulated and processed at the end, the
deviation in knowledge parameters up to n

th

batch is similar to that of the zero instance
memory learning. However, when all the
accumulated hard samples are processed, we
get the values for the knowledge parameters
similar to the one shown in Table III.
In order to get clear idea about the average size
of the partial instance memory, we have also
conducted experiments by dividing the synthetic
dataset of 5000 points into (i) 5 batches of 1000
samples each (ii) 8 batches of 625 samples each

(iii) 10 batches of 500 samples each and (iv) 20
batches of 250 samples each and processed
them in different orders. The average number of
samples retained in partial memory when the
given dataset of 5000 samples is divided into 4,
5, 8, 10 and 20 batches of different sizes is
depicted in Fig 13. From the graph, it is clear that
the average number of samples maintained in
partial instance memory is less than 500. For the
experiments with varying number of batches as
well as with different batch sizes, the results
obtained are similar.
A similar experiment of dividing the dataset of
5000 samples into 5 batches of 1000 samples
each, 8 batches of 625 samples each, 10
batches of 500 samples and 20 batches of 250
samples each, was conducted. The growing size
of the partial instance memory is depicted in Fig
14.
From Fig 14, it is clear that if the batch size is
smaller as for example, the batch sizes of 625,
500 and 250, the entire data of all batches is
considered as hard samples and gets
accumulated in the partial instance memory. Only
when all the batches have arrived, the process of
learning begins with accumulated hard samples;
in which case learning is no longer incremental.
Even after waiting for the batches to arrive and
even after wasting lot of effort in trying to group
the elements of each batch unsuccessfully, we
still have to process a larger group of elements
which requires lot of memory and the available
memory, though large is finite [38].
Worst will be the scenario if the process of
learning is based on zero instance memory, as
no knowledge is generated at both intermediate
as well as at the final stages.
Experiments were also conducted by keeping the
number of samples in a batch as constant and
varying the total number of samples. The batch
size was fixed at 1000. The initial dataset of 5000
samples was increased to 10,000 samples with
2000 samples in each class. Further the total
number of samples increased to 15,000, 20000,
30000, 40000 and 50000 with 3000, 4000, 6000,
8000 and 10000 samples respectively in each
class. The average of total number of knowledge
packets obtained when the number of batches
was 5, 10, 15, 20, 30, 40 and 50 were projected
in Fig 15. It is clear that requirement of memory
to store concepts has got stabilized. Actually in
principle, the number of knowledge packets
should die down with the increase in the number
of batches. However, as mentioned earlier,
because of the internal merging of only one level
to avoid over merging, we have obtained only the
stability.
Result obtained with a similar experiment by
accumulating all the hard samples in partial
instance memory instead of processing them with
the next immediate batch or chunk, is depicted in
Fig 16. It is clear that the requirement of partial

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 62

instance memory keeps on increasing with the
increase in number of batches. Further there will
be a deviation in the intermediate knowledge as
the hard samples are not allowed to participate at
all levels.
We have also conducted experiments by
increasing the number of classes to six, seven
and up to ten and the results obtained was
similar for average number of hard samples.

Experimentation
We have conducted experiments on three bench
mark datasets –(i) Temperature dataset [43, 44]
which is a twenty four dimensional data of 37
samples; (ii) Iris [45] which is a four dimensional
data of 150 samples distributed over three
classes; and (iii) 700X3 dataset [37] which is a
dataset of three dimensions with 700 samples
distributed over five classes.

Temperature dataset
Average of daily minimum and maximum
temperatures of each month from January to
December covering 37 cities all over the globe
was considered to be the data with 24 features
(maximum, minimum of each month for 12
months). This data can be found in any
engagement book or dairy. This data was used
for clustering [43, 44]. This is a typical pattern
recognition problem. Several classes are present
in the data since the data covers many zones
(tropical, temperature, equatorial, frigid etc).
If we process all the 37 cities with the data of
each month as a batch or a chunk, then the cities
will change their classes in the subsequent
stages of learning, which requires splitting of
knowledge packets as well as to address the
order effects [39]. Hence in this study, we are not
considering the cases where samples will be
changing their classes over a period of time. For
example, a child moves from the class childhood
to adult over a period of time; a seed changing its
class to plant/tree over a period of time and so
on. In this study, for the present temperature
dataset we assume that all the details
(temperature of 12 months) of the Asian cities are
available at one point of time, all European cities
at another point of time and so on.
From the entire data set, with the DBSCAN
parameters MinPts set to 2 and Eps set to 25, we
obtained 7 clusters out of which 3 clusters of one
element each (samples that have been marked
as outliers are considered as a cluster of one
element each with a standard deviation of zero).
Further as explained earlier, the data has been
divided into 4 batches. Three batches to have 9
samples each and one batch to have 10
samples. Threshold for merging of batches is set
to 0.5. The details of the number of clusters,
outliers at each stage, number of unmerged
clusters are shown in Table V.

Table VI gives the summary of deviation of
knowledge parameters of all the seven
knowledge packets. Since the number of features
is more, the average deviation has been
projected. Since all the elements of the
knowledge packets 4, 5, 6 and 7 remain same
the deviation is at its lowest level. However, since
some of the elements of other knowledge
packets have got interchanged with that of the
originals, the deviation is on a slightly higher side.
This is because of the fact that once an element
is moved to a packet, in the next batch of
samples some elements may not get the desired
MinPts required for the DBSCAN clustering
algorithm and may remain as outliers. Only at the
final stages of merging, these points may merge
with the nearest packet resulting in some
deviation.

IRIS data [45]
The standard iris dataset [45] has150 points in 4-
dimensional space. First 50 samples belong to
class 1; the second 50 belong to class 2 and the
third 50 belong to class 3; Class 1 is clearly
separable from class 2 and 3, whereas class 2
and 3 are not separable. This dataset has been
used extensively to study the behavior of different
clustering algorithms. With the DBSCAN
parameters MinPts set to 2, Eps set to 1.4, we
obtained 3 clusters and zero outliers from the
entire dataset of 150 samples. As explained
earlier, the samples were arranged in random
order and divided into six batches of equal size
(25 elements each) and processed the batches in
sequential order to simulate the temporal arrival
of data. Threshold for merging of batches set to
0.065.
Details of the number of clusters, outliers at each
stage, number of unmerged clusters are shown in
Table VII. Dynamic merging of the nearest
batches yields three knowledge packets. Table
VIII gives the summary of average deviation of
knowledge parameters of all the three knowledge
packets. Since Packet 1 is clearly separable, we
got the minimum deviation.

700X3 Dataset [37]
This dataset has 700 elements with 3 features.
There are five classes with 140 samples in each
class. First 140 samples belong to class 1, next
140 belong to class 2 and so on. To get the clear
separation of classes all the three parameters are
mandatory. This dataset has been used as a
regression line symbolic sample set and has
been established that the first two principle
components are good enough to classify this
symbolic dataset [37]. With the DBSCAN
parameters MinPts set to 2, Eps set to 6, we
obtained 5 clusters and zero outliers from the
entire dataset of 700 samples. Further, we have
randomly arranged the samples and divided them

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

63

into 7 batches of 100 samples each. We set the
threshold for merging of batches to 0.3.
Details of number of clusters, outliers at each
stage and number of unmerged clusters are
shown in Table IX. Repeated merging yields the
five knowledge packets. We have obtained very
good results with an accuracy of 100% in
regression line parameters of the knowledge
packets and are shown in Table X.

Conclusion
If the requirement is to understand the trend in
the data as the observations keep arriving in
case of temporal chunks, then it is necessary to
extract the knowledge at the arrival of every
chunk of data and keep augmenting the
knowledge status with the progress in arrival of
data chunks in temporal sequence. This warrants
incremental learning. In fact incremental learning
is also the best solution since one cannot handle
the pile of data that could get pooled if one
desires to employ one-shot learning and further,
the time gap between the arrival of two
successive chunks, in many cases should be
more than enough to complete the processing of
data of the chunk. However, incremental learning
has problems in terms of accumulating the
knowledge and carrying forward the hard data
samples. A new model of incremental learning for
generation of batch knowledge and for
augmentation of knowledge with the arrival of
subsequent batch of data has been presented in
this research work. For the purpose we have
employed DBSCAN procedure to generate
clusters and Cluster-Histo-Regression is used for
getting the knowledge packets and Histo-
Regression-Distance is used for incremental
augmentation of knowledge packets. The
regression line parameters of the knowledge
packets obtained by incremental augmentation
have shown an accuracy of 100% in some of the
experiments conducted on standard datasets.
Applications which involve backtracking might not
be suitable since the batch knowledge is
discarded once the overall knowledge is updated
and there is no option to delete the elements
from the knowledge packets. Further, only one
level of internal merging could be a drawback of
the proposed strategy as optimal description of
the accumulated knowledge at any intermediate
level may not be clearly visible.

Appendix
The regression distance measure proposed by
[36, 37] is summarized below.
Consider a histogram H with 10 bins; H = {b1, b2,
b3, b4, b5, b6, b7, b8, b9, b10} where bi is the
frequency count of the bin centered at Ci. For
example the corresponding histogram for the
data say A = {10 30 40 50 40 30 20 20 30 10} is
as shown in Fig 17. Now a cumulative frequency
distribution is computed for each of these 10

centers resulting in the cumulative histogram
(CH); CH = {cn1, cn2, cn3, cn4, cn5, cn6, cn7, cn8,
cn9, cn10} where cni = sum (cnk) for k = 0 to i; for
the histogram of Fig 17, CH becomes {10 40 80
130 170 200 220 240 270 280} and the
cumulative histogram is as shown in Fig 18.
CH is then normalized by dividing cni for i = 1 to
10 by cn10. Now 10 points are marked on the top
of each bin in the CH corresponding to the bin
centers and a first order polynomial is fitted
across these 10 points to obtain regression line
with yi ranging between 0 and 1 and xi’s range is
decided by the minimum and maximum co-
efficient values at a particular scale. The
regression line fitting is done as shown in Fig 19.
Distance between such obtained lines can be
computed by finding the area between the two
lines as well as by finding the behavior of the two
lines. The calculation of distances is as shown in
Fig 20.

Acknowledgement
Authors would like to thank Caledonian College
of Engineering, Muscat, Sultanate of Oman for
their encouragement to take up this research
work. Authors would also like to thank the
research scholars – Mr. Manjunatha S, Mr.
Harish B.S, Mr. Prabhudev Jagdeesh, Mrs.
Nirmala Shivanada; immensely for their
continuous support during the implementation of
the experiments. Authors would also like to thank
Dr. Naushath of HP Labs, Mr. Siva Ramakrishna
of Indian Institute of Science and Mr. B.
Raghavendra for their support in literature review.

References
[1] Christophe G.C. (2000) AI Communications,

13(4), 215-223.
[2] Maloof A.M., Michalski R.S. (2004) Artificial

Intelligence 154, 95-126.
[3] Kaufman K.A., Michalski R.S. (2004)

Reports of the Machine Learning and
Inference Laboratory, MLI 04-4.

[4] Michalski. R.S. (2003) Invited talk at the
Sanken Symposium on Data Mining and
Semantic Web, Osaka university,
Japan.

[5] Jain A.K., Dubes R.C. (1998) Prentice Hall,
Englewood Cliffs, NJ.

[6] Jain A.K, Murthy M.N., Flynn P.J. (1999)
ACM Computing surveys, 31(3), 264-
323.

[7] Yuanhong Li, Ming Dong, Jing Hua (2008)
Pattern recognition Letters 29, 10-18.

[8] Syed Zakir Ali, Nagabhushan P., Pradeep
Kumar R. (2009) International
Conference on Data Mining (DMIN-09),
375-381.

[9] Kibler D. Aha (1987) Proceedings of the
Fourth International Conference on
Machine Learning, Morgan Kauffmann,
San Francisco, CA, 24-30.

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 64

[10] Sebastian Luhr, Mihai Lazarescu (2009)
Data and Knowledge Engineering 68, 1-
27.

[11] Widmer G., Kubat M. (1996) Machine
Learning 23, 69-101.

[12] Widmer G. (1997) Machine Learning 27,
259-286.

[13] Maloof A.M., Michalski R.S. (2000) Machine
Learning 41, 27-52.

[14] Sigita Misina (2006) Proceedings of the
International Conference on
Computational Intelligence, Theory and
Applications, 9th Fuzzy days in
Dortmund, Germany, 20, 545-553.

[15] Tian Zhang, Raghu Ramakrishnan, Miron
Livny (1996) Proceedings of the 1996
ACM SIGMOD International Conference
on Management of Data, Montreal,
Canada, 103-114.

[16] Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Michael Wimmer, Xiaowei X.
(1998) Proceedings of the 24th VLDB
conference New York, 323-333.

[17] Fazli C., Edward A.F., Cory D.S., Robert
K.F. (1995) International Journal of
Information Sciences—Informatics and
Computer Science, 84, 101-114.

[18] Khalid M. H., Mohammed S. K. (2003)
IEEE/WIC International Conference on
Web Intelligence, Halifax, Canada, 597-
601.

[19] Chaudhuri B.B. (1994) Pattern Recognition
Letters 15, 27-34.

[20] Narasimhamurthy M., Sridhar V. (1991)
Pattern Recognition Letters 12, 511-
517.

[21] Martin H.C.L. (2006) Doctoral Dissertation
of the Michigan State University.

[22] Nong Y., Xiangyang L. (2002) Journal of
Computers and Industrial Engineering
43, 677-692.

[23] Seiichi ozawa, Nikola kasabov (2008) IEEE
Transactions on Neural Network, 1061-
1074.

[24] Sarda N.L., Srinivas N.V. (1998)
Proceedings of the Ninth International
Workshop on Database and Expert
Systems Applications, 240 – 245.

[25] Ahmed M. A., Nagwa M.E.M., Yousry Taha
(2001) Proceeding of the 1

st
 SIAM

conference on Data Mining, Chicago, IL.
[26] Masseglia F., Poncelet P., Teisseire M.

(2003) Data & Knowledge Engineering,
46(1), 97-121

[27] Eric C., Akanksha B., Tig C., Anhai D.,
Jeffrey N. (2007) Proceedings of the

33rd International Conference on VLDB,
1045-1056.

[28] Jieping Y, Xiong H, Haesun P, Ravi J., Vipin
K. (2005) IEEE Transaction on
Knowledge and Data Engineering,
17(9), 1208-1222.

[29] Kolonia P. (1994) Popular Photography,
58(1), 30-34.

[30] Charu C. A., Jiawei Han, Jianyong Wang,
Phillip S. Yu. (2003) Proceedings of the
29

th
 VLDB Conference, 81-92.

[31] Liaden O’Callagahan, Nina Mishra, Adam
Meyerson , Sudipto Guha, Rajeev
Motwani (2002) Proceedings of the
ICDE, 685-694.

[32] Han Kamber (2006) Second Edition,
Elsevier, 51 -56.

[33] Soman K.P., Shyam Diwakar, Ajay V.
(2006) Prentice Hall of India.

[34] Martin Ester, Hans-Peter Kriegel, Jorg
Sander, Xiaowei Xu. (1996)
Proceedings of the 2

nd
 International

Conference on Knowledge Discovery
and Data Mining (KDD-96), 226-231.

[35] Diday E., (2002), Electronic Journal of
Symbolic Data Analysis, 1-25.

[36] Pradeep Kumar R., Nagabhushan P. (2007)
Engineering Letters, 14(1),
EL_14_1_30,
www.engineeringletters.com/issues_v14
/issue_1/EL_14_1_30.pdf

[37] Pradeep Kumar R. (2006) PhD Thesis of
the University of Mysore, India.

[38] Tsai-Hung Fan, Dennis K.J. Lin, Kuang-Fu
Cheng (2007) Data and Knowledge
Engineering 61, Elsevier, 554-562.

[39] Langley P. (1995) P. Reimann & H. Spada
(Eds), Elsevier, Amsterdam.

[40] John F. Roddick, Myra Spiliopoulou (2002)
IEEE Transactions on Knowledge and
Data Engineering, 4(4), 301-316.

[41] Michael J. Parik (2008) Elsevier Academic
Press.

[42] Yi-Pu Wu, Jin-Jiang Guo, Xue-Jie Zhang
(2007) International Conference on
Machine Learning and Cybernetics, 5,
19(22), 2608-2614.

[43] Bapu B. K. (2004) PhD thesis of the
University of Mysore, India.

[44] Lalitha Rangarajan (2004) PhD Thesis of
the University of Mysore, India.

[45] UCI Machine Learning Repository,
http://archieve.ics.uci.edu/ml/datasets/Iris

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

65

Table I- Knowledge parameters for incremental learning

[B i] No. of
elements

f1 f2 … fn

[Cl1]
[Cl2]
…
[Clk]

n1

n2

…

nk

i 1

1
µ

i 1

2
µ

..
i 1

k
µ

i 1

1
σ

i 1

2
σ

…

i
1

k
σ

i

L
1

1

i

L
1

2

…

i

Lk

1

i 2

1
µ

i 2

2
µ

..
i 2

k
µ

i 2

1
σ

i 2

2
σ

…

i
2

k
σ

i

L
2

1

i

L
2

2

…

i

Lk

2

…
…
…
…

i n

1
µ

i n

2
µ

..
i n

k
µ

i n

1
σ

i n

2
σ

…

i
n

k
σ

i

L
n

1

i

L
n

2

…

i

L
n

k

Where, µ – Mean; σ – Standard deviation/Density;
L – Regression Line in terms of slope and intercept; Cl – Cluster;

Table II- Details of knowledge packets and outliers in PIML from Synthetic data

Batch
No

No. of
elements

No. of
outliers

No. of
knowledge
packets

No. of
unmerged
knowledge
Packets

No. of knowledge
packets before
internal merging

No. of knowledge
packets after
internal merging

1
2
3
4

1250
1250+566
1250+219
1250+517

566
219
517
299

22
39
25
40

299

--
15
06
10
17

22
(22+15)=37
(25+6) =31

(21+10)=31
(24+17)=41

22
25
21
24
29

Table III- Summary of deviation of knowledge parameters of Synthetic dataset in Partial Instance Memory learning

Knowle
dge
Param
eter

Values Packet 1
f1 f2

Packet 2
f1 f2

Packet 3
f1 f2

Packet 4
f1 f2

Packet 5
f1 f2

µ

σ

Slope

Interce
pt

Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)

1.0034 0.9966
1.0060 0.9990
0.25 0.24
0.5401 0.4533
0.5483 0.4556
1.5 0.5
0.1428 0.1413
0.1431 0.1417
0.2 0.28
0.4928 0.4971
0.4915 0.4958
0.26 0.26

4.0025 0.9958
4.0069 0.9911
0.1 0.4
0.5393 0.4527
0.5187 0.4525
3.8 0.04
0.2153 0.1412
0.2147 0.1402
0.27 0.7
-0.2883 0.4976
-0.2880 0.5006
0.1 0.6

2.5040 2.4973
2.5075 2.5009
0.1 0.1
0.5400 0.4533
0.5404 0.4521
0.07 0.26
0.2881 0.2870
0.2880 0.2870
0.03 1.4
-0.1706 -0.1675
-0.1712 -0.1677
0.35 0.11

1.0025 3.9958
0.9989 3.9992
0.3 0.08
0.5393 0.4527
0.5410 0.4538
0.3 0.2
0.1427 0.2148
0.1420 0.2144
0.4 0.18
0.4932 -0.2864
0.4958 -0.2862
0.5 0.06

4.0032 3.9965
4.0039 3.9962
0.01 0.007
0.5381 0.4348
0.5425 0.4449
0.8 2.3
0.2152 0.2147
0.2151 0.2147
0.04 0
-0.2882 -0.2864
-0.2882 -0.2863
 0 0.03

Table IV- Comparison of Deviation of Knowledge Parameters in Zero Instance Memory [8] and Partial Instance Memory

Percentage of deviation in knowledge parameters

Zero Instance Memory Partial Instance Memory

Knowledge Packet No. Feature

µ σ Slope Intercept µ σ Slope Intercept
1

2

3

4

5

f1
f2
f1
f2
f1
f2
f1
f2
f1
f2

1
5
2.7
4
0
3.2
5
0.75
1
1.7

22
2
24
6.6
16.6
8.8
24
8.8
24
11.6

0
7
4.7
7.1
0
3.4
7.1
4.7
4.7
0

0
4
6
0
0
11.7
8.1
0
3.4
3.4

0.25
0.24
0.1
0.4
0.1
0.1
0.3
0.08
0.01
0.007

1.5
0.5
3.8
0.04
0.07
0.26
0.3
0.2
0.8
2.3

0.2
0.28
0.27
0.7
0.03
1.4
0.4
0.18
0.04
0

0.26
0.26
0.1
0.6
0.35
0.11
0.5
0.06
0
0.03

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 66

Table V- Details of knowledge packets, outliers in partial instance memory learning from temperature dataset

Batch
No

Number of
elements

Outliers Number of
knowledge
packets

Number of unmerged
knowledge packets

Number of knowledge
packets at the end of each
batch

1
2
3
4

9
10+9
9+5
9+5

9
5
5

10

0
3
3
1

Not applicable
00
01
00

00
03
04

04+(10 clusters of one
element each)

Table VI-Summary of deviation of knowledge parameters of temperature data
Knowledge
parameters

Values Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5 Pkt 6 Pkt 7

Μ

σ

Slope

Intercept

Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)

9.50
9.40
1
3.57
3.59
0.5
0.02
0.02
0
0.33
0.33
0

18.52
15.10
18
4.18
2.80
33
0.02
0.02
0
0.17
0.22
29

26.27
25.52
2.8
3.19
3.69
15.6
0.02
0.02
0
0.07
0.08
14.2

18.88
18.88
0
2.92
2.92
0
0.02
0.02
0
0.15
0.15
0

10.45
10.45
0
0.00
0.00
0
0.01
0.01
0
0.33
0.33
0

18.50
18.50
0
0.00
0.00
0
0.02
0.02
0
0.20
0.20
0

10.45
10.45
0
0.00
0.00
0
0.01
0.01
0
0.33
0.33
0

Table VII-Details of knowledge packets, outliers, for iris dataset

Batch
No

Number of
elements

Outliers Number of
knowledge
packets

Number of unmerged
knowledge packets

Number of knowledge
packets at the end of each
batch

1
2
3
4
5
6

25
25+2
25+0
25+0
25+0
25+0

2
0
0
0
0
1

2
3
3
3
2
2

Not applicable
01
01
01
00
00

2
3
4
5
5

05+(1 knowledge packet
of one element each)

Table VIII-Summary of average deviation of knowledge parameters of Iris data

Knowledge
Parameters

Values Packet 1 Packet 2 Packet 3

µ

σ

Slope

Intercept

Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)

2.5330
2.5330
0
0.2510
0.2624
4.5
0.0658
0.0658
0
0.4753
0.4753
0

4.1224
3.9497
4.1
0.4662
0.5661
21
0.1055
0.1017
3.6
0.1134
0.1519
33.9

3.2815
3.2583
0.7
0.2724
0.3237
18.8
0.0871
0.0874
0.3
0.2993
0.2994
0.03

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

67

Table IX-Details of knowledge packets, outliers for 700 X 3 dataset
Batch No Number of

elements
Outliers Number of

knowledge
packets

Number of
unmerged
knowledge packets

Number of knowledge
packets at the end of
each batch

1
2
3
4
5
6
7

100
100+0
100+0
100+1
100+0
100+0
100+0

0
0
1
0
0
0
0

6
6
6
6
6
6
6

Not applicable
00
00
00
00
00
00

6
6
6
6
6
6
6

Table X-Summary of average deviation of knowledge parameters of 700 X 3 data

Knowledge
Parameters

Values Pkt 1 Pkt 2 Pkt 3 Pkt 4 Pkt 5

µ

σ

Slope

Intercept

Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)
Actual
Computed
Difference (%)

49.8163
49.8163
0
2.3142
2.3684
2.3
0.0079
0.0079
0
0.1610
0.1610
0

45.1366
45.1366
0
2.1091
2.1581
2.3
0.0067
0.0067
0
0.2591
0.2591
0

40.4568
40.4568
0
1.9041
1.9505
2.4
0.0055
0.0055
0
0.3572
0.3572
0

45.1366
45.1366
0
2.1091
2.1624
2.5
0.0067
0.0067
0
0.2591
0.2591
0

41.4879
41.4879
0
1.9635
2.0051
2.1
0.0094
0.0094
0
0.1481
0.1481
0

Fig. 1- Initial Dataset

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 68

Fig. 2- Twenty-Two Clusters of batch B1

Fig. 3- Thirty Nine Clusters of B2

Fig. 4- Thirty Seven Clusters at the end of B2

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

69

Fig. 5- Clusters at the end of B2 after internal merging

Fig. 6- Twenty Five Clusters of B3

Fig. 7- Twenty One Clusters at the end of B3 after internal merging

Fig. 8- Forty Clusters of B4

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 70

Fig. 9- Twenty Four Clusters at the end of B4 after internal merging

Fig. 10- Twenty Nine Clusters at the end of K4

Fig. 11- Final Five Knowledge Packets/Clusters

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

71

Fig. 12- Percentage of average deviation of knowledge parameters in zero and partial

Fig. 13- Average samples maintained in partial instance memory when the given dataset of 5000 samples is

divided into 4, 5, 8, 10 and 20 batches of different sizes.

Fig. 14- Number of hard samples in partial instance memory when the initial dataset of 5000 samples is

divided into batches of different sizes

A new cluster-histo-regression analysis for incremental learning from temporal data chunks

International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010 72

Fig. 15- Average knowledge packets retained in concept memory in partial instance memory learning when

the number of batches increased from 5 to 50 in different steps.

Fig. 16- Number of accumulated hard samples in partial instance memory learning when the batch size is

fixed at 1000 and the number of batches increased from 5 to 20 in different steps.

Fig. 17- A Sample Histogram

Fig. 18- Cumulative Histogram for the histogram of Fig 17.

Fig. 19- Regression Line fitting on a normalized histogram

Nagabhushan P, Syed Zakir Ali and Pradeep Kumar R

Copyright © 2010, Bioinfo Publications, International Journal of Machine Intelligence, ISSN: 0975–2927, Volume 2, Issue 1, 2010

73

Fig. 20- Distance between two lines

Vitae

P Nagabhushan (BE-1980, M.Tech–1983, PhD-1989) is a full professor at the
department of studies in Computer Science and is Director – Planning Monitoring and
Evaluation Board at the University of Mysore, India. He is an active researcher in the
areas pertaining to Pattern Recognition, Document Image Processing, Symbolic Data
Analysis and Data Mining. Till now he has successfully supervised 18 PhD candidates.
He has over 400 publications in journals and conferences of International repute. He
has chaired several international conferences. He is a visiting professor to USA, Japan
and France. He is a fellow of Institution of Engineers and Institution of
Telecommunication and Electronics Engineers, India.

Syed Zakir Ali (1970) is a research scholar at the department of studies in Computer
Science, Manasagangothri, Mysore. He completed his Bachelor’s degree in Computer
Science and Engineering in 1993 from Vijayanagar Engineering College, Bellary,
affiliated to Gulbarga University; and Master’s degree in Computer Engineering in
1996 from Sri Jayachamarajendra College of Engineering (SJCE), affiliated to
University of Mysore, India. He is an academician and a budding researcher who has
taught graduate level courses at International levels for the past 12 years. His areas of
interest include Data Mining, Knowledge Management, and Artificial Intelligence. He is
a member of IEEE and ISTE.

Pradeep Kumar R (1977), has completed his bachelors degree in Electrical
Engineering in 1999, Master’s degree in Computer Engineering in 2001 and PhD in
Computer Science from University of Mysore, India in 2006. He has been an active
researcher and an academician for the past 8 years. His areas of interest include Data
and Knowledge Engineering, Image and video processing and Computational
Intelligence. He is a professional member of ACM

