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Abstract- In a transportation problem generally a single criterion of minimizing the total transportation cost is 
considered but in certain practical situations two or more objectives are relevant. For example, the 
objectives may be minimization of total cost, consumption of certain scarce resources such as energy, total 
deterioration of goods during transportation etc. Clearly, this problem can be solved using any of the 
multiobjective linear programming techniques, but the computational efforts needed would be prohibitive in 
many cases. In this paper, The Bi-objective transportation problem, where only objectives are considered as 
fuzzy. We apply the fuzzy programming technique with hyperbolic membership function to solve a bi-
objective transportation problem as vector minimum problem. 
Keywords: Transportation problem, Fuzzy programming, Linear and nonlinear membership functions, Bi 
criteria optimization technique 
 
Introduction  
The transportation problem (TP) can be 
formulated as a linear programming problem, 
where the constraints have a special structure [1]. 
However, in most real world cases transportation 
problems can be formulated as multi-objective 
problems [2, 3]. In certain situations two 
objectives are relevant in transportation problems. 
For example, two linear objective may be 
minimization of the cost and minimization of the 
total deterioration. Aneja and Nair developed a 
criteria space approach for bicriteria.TP [1]. 
Leberling [5] used a special- type nonlinear 
(hyperbolic) membership function for the vector 
maximum linear programming problem. He 
showed that solutions obtained by fuzzy linear 
programming with this type of non-linear 
membership function are always efficient. Dhingra 
and Moskowitz [4] defined other types of the non-
linear (exponential, quadratic and logarithmic) 
membership functions and applied them to an 
optimal design problem. Verma, Biswal and 
Biswas [7] used the fuzzy programming technique 
with some non-linear (hyperbolic and exponential) 
membership functions to solve a multi-objective 
transportation problem 
 
Mathematical model  
In a typical transportation problem, a 
homogeneous product is to be transported from 
each of m sources to n destinations. The sources 
are production facilities, warehouses, or supply 
point, characterized by available capacities ai (i = 
1,2,…, m ). The destinations are consumption 
facilities, warehouses, or demand points, 
characterized by required levels of demand bj ( j = 
1,2,…, n ). A penalty cij and dij are associated with 
transportation of a unit of the product from 
sources i to destination j. The penalty could 
represent transportation cost and deterioration of 
a unit. A variable Xij represents the unknown 
quantity to be transported from origin Oi to 
destination Dj. In the real would, however,  
 

 
transportation problems are not all-single 
objective type. We may have more than one 
objective in a transportation problem. 
A Bi-objective transportation problem may be 
stated mathematically as: 

m n

1 ij ij
i=1 j=1

Minimize Z = c x∑∑  (1) 

m n

2 ij ij
i=1 j=1

Minimize Z = d x∑∑  (2)   

subject to       
n

ij i
j=1

x = a∑  ,    i = 1,2,…,m   (3)   

m

ij j
i=1

x = b∑  ,    j = 1,2,…,n (4)
 

xij ≥  0   for all i and j  (5)   
where  cij and dij  are the penalties associated 
with transportation of a unit from source i to 
destination j. The penalties may represent 
transportation cost, deterioration cost, delivery 
time, quantity of goods delivered, under used 
capacity, and so on.   

ai>o for all i,     bj>o, for all j,      Cij, dij ≥ o for all 
i, j, and  
m n

i j
i=1 j=1

a = b∑ ∑ (Balanced condition)     

The balanced condition is treated as a necessary 
and sufficient condition for the existence of a 
feasible solution. A standard transportation 
problem has exactly (m + n) constraints and (m 
n) variables. The LINDO (Linear Interactive and 
Discrete Optimization) package handles the 
transportation problem in an explicit equation 
form and thus solves the problem as a standard 
linear programming problem.  
 
Fuzzy programming technique to BOTP 
The Bi-objective transportation problem can be 
considered as a vector minimum problem. Let 
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U1, L1 be the upper and lower bound for The first 
objective function and U2, L2 be the upper and 
lower bound for The second   objective function 
where lower bound indicates aspiration level of 
achievement and upper bound indicates highest 
acceptable level of achievement for the objective 
function respectively.  
Let d1 = (U1 – L1) and d2 = (U2 – L2) be 
degradation allowance for the Z1 and Z2 objective. 
Once the aspiration levels and degradation 
allowance for each objective have been specified, 
we have formed the fuzzy model. Our next step is 
to transform the fuzzy model into a "Crisp" model.  
 
Algorithm  
Step 1: Solve the Bi-objective transportation 
problem as a single objective transportation 
problem using, each time, only one objective 
(ignore all others).   Let X1* = {x

1
ij}, X

2
* = {x

2
ij}, be 

the optimum solutions for Z1, Z2 different single 
objective transportation problem. 
Step 2:   From the results of step 1, calculate the 
values of all the objective functions at all these 
X1*, X

2
* optimal points. Then a pay off matrix is 

formed. The diagonal of the matrix constitutes 
individual optimum minimum values for the two 
objectives. The X1*, X

2
* are the individual optimal 

solutions and each of these are used to determine 
the values of other individual objectives, thus the 
pay off matrix is developed as:     

1 2

1 2

1 1 1

1 2

2 2 2

x x

Z Z ( x ) Z ( x )

Z Z ( x ) Z ( x )

∗ ∗

∗ ∗

∗ ∗

 
 
 

    

We find the upper and lower bound for each 
objective from the pay off  

Matrix. Let 
1* 2*

1 1Z (x ), Z (x )  be the values of 

the first objective Z1 then L1 = 

min[
1* 2*

1 1Z (x ), Z (x ) ] and U1   = max 

[
1* 2*

1 1Z (x ), Z (x ) ]. Let 
1* 2*

2 2Z (x ), Z (x )  be 

the values of the second objective Z2 then L2 = 

min [
1* 2*

2 2Z (x ), Z (x ) ] and U2   = max 

[
1* 2*

2 2Z (x ), Z (x ) ]. 

Step 3: From step 2, we find for each objective 
the worst and the best values 
corresponding to the set of 
solutions. 

An initial fuzzy model of the problem (1-4) can be 
stated as: - 
Find xij, i =1, 2, …,m;  j = 1, 2, …,n;   
so as to satisfy 

 Z1 ≤
%

 L1 ,   (6) 

 Z2 ≤
%

 L2 ,  (7)                                                                                                                                             

 subject to 
n

ij i
j=1

X = a∑  ,    i = 1,2,…,m (8) 

m

ij j
i=1

X = b∑  ,    j = 1,2,…,n (9)                     
 

xij ≥  0   for all i, j, k  (10)   

≤
%

 fuzzification symbol indicates nearly less than 

equal to 
Step 4:  Case (i) 
Define a hyperbolic membership function 

H H

1 21 2
( ) and ( )Z Zµ µ  for the      

objectives 
1 2

( ) and ( )Z Z respectively, are 

defined as follows 
   

H 1 1
1 1 11

1 U +L 1
µ (Z )  tanh -Z α +

2 2 2

  
=   

  
                                                           

(11) 

    where 1α  is a parameter. Where 

1
1 1 1 1

3 6
α = =

(U -L )/2 (U -L )
 

     

H 2 2
2 2 22

1 U +L 1
µ (Z )  tanh -Z α +

2 2 2

  
=   

  
                                                       

(12) 

where 2α  is a parameter. Where 

2
2 2 2 2

3 6
α = =

(U -L )/2 (U -L )
 

The hyperbolic membership functions (11-12) 
has the following properties: 

1. It is strictly decreasing function. 
2. It is strictly concave 

for 1 1 1
Z ( U + L ) / 2≤ ,

2 2 2
Z ( U +L ) / 2≤  

3. It is equal to 0.5 for 

1 1 1
Z ( U +L ) / 2= ,

2 2 2
Z (U +L ) / 2=  

4. It is strictly convex 

for 1 1 1
Z (U + L ) / 2,≥

2 2 2
Z ( U + L )/ 2≥  

5.  For all 
mnX R∈ holds 

H H

1 1 2 2o<µ (Z ) < 1,o<µ (Z )< 1;

H H

1 1 2 2µ (Z )=1, µ (Z ) =1  
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      is the lower asymptotic function of 
H H

1 1 2 2µ (Z ), µ (Z ) ;  
H

1 1µ (Z )  = 0,           

H

2 2µ (Z )  = 0 is the upper asymptotic 

function of 
H H

1 1 2 2µ (Z ), µ (Z ). . 

Step 5: Formulate an equivalent nonlinear 
programming model with the help of the defined 
membership function (11-12) for the Bi-objective 
transportation problem. This is stated as follows:  

Maximize λ  (13) 

subject to   
H

1 1λ µ (Z )≤  (14)   

H

2 2λ µ (Z )≤  (15)              

n

ij i
j=1

X = a∑  ,    i = 1,2,…,m (16)   

m

ij j
i=1

X = b∑    ,    j = 1,2,…,n (17)                     
 

xij ≥  0   for all i, j and    λ 0≥  (18)   

where 

H H

1 1 2 2

1 2

λ {µ (Z )}, {µ (Z )}Min Min=  

This is a nonlinear programming problem with one 
linear objective function, two non-linear and 
m+n+2mn+1 linear restrictions. We shall now 
prove that there exists an equivalent linear 
programming problem. 

Theorem: Define mn+1X = tanh
-1

(2λ – 1). The 

equivalent linear programming problem for the 
above nonlinear programming problem is as 
follows:   

Maximize λ  (19) 

subject to  

1 1 mn+1 1 1 1
α Z +X α ( U +L ) / 2≤ (20)  

2 2 mn+1 2 2 2
α Z +X α ( U +L ) / 2≤ (21)  

constraints (16),(17), (18)  
t -t

t -t

e -e
Proof. For t  R, we know tanh(t)=

e +e
∈  

.  
Therefore, nonlinear programming problem can 
be formulated as: 

     

Maximize  λ     (22) 
subject to  

1 1
11

1 U +L 1
λ  tanh - Z α

2 2 2

  
− ≤  

  
(23)   

2 2
22

1 U +L 1
λ  tanh - Z α

2 2 2

  
− ≤  

  
(24)   

and constraints (16),(17), (18)  
This is equivalent to  

Maximize λ   (25)   
                                subject to  

1 1
11

U +L
tanh - Z α 2λ -1

2

  
≥  

  
(26)  

 

2 2
22

U +L
tanh - Z α 2λ -1

2

  
≥  

  
(27)   

and constraints (16),(17), (18)  

Since tanh and 
-1tanh are strictly increasing 

functions, we have equivalently  
Maximize λ     (28)   
subject to  

-11 1
11

U +L
 - Z α tanh (2λ -1)

2

 
≥ 

 
 
(29)  

 

-12 2
22

U +L
- Z α tanh (2λ -1)

2

 
≥ 

 
  
(30)  

 

and constraints (16),(17), (18)  

or with mn+1X  =  tanh
-1

 (2λ – 1)  

Maximize λ     (31)   
subject to  

1 1
mn+1 1 11

U +L
X α Z α

2

 
+ ≤  

 
 
(32)  

 

2 2
mn+1 2 22

U +L
X α Z α

2

 
+ ≤  

 
 
(33) 

 

and constraints (16),(17), (18)  

Because of 
mn+1tanh(X ) 1

λ = +
2 2

 and the 

tanh function strictly increasing, it follows 
equivalently: 

Maximize mn+1X    (34)   

subject to  

1 1
mn+1 1 11

U +L
X α Z α

2

 
+ ≤  

 
(35)  

 

2 2
mn+1 2 22

U +L
X α Z α

2

 
+ ≤  

 
 
(36)  

 

and constraints (16),(17), (18) and mn+1X 0≥  

This linear programming can be further simplified 
as: 
Maximize λ  (37)   
subject to 

m n
mn+1 1 1

ij ij
i =1 j=1

1

X U +L
c

α 2

 
+ ≤∑ ∑  

 
x

 (38)   

m n
mn+1 2 2

ij ij
i =1 j=1 22

X U +L
d

α

 
+ ≤∑ ∑  

 
x   

(39)   

and constraints (16),(17), (18) and mn+1X 0≥  
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Case (ii)  
However, if we use a linear membership 

function
1 2
(x ) and (x ),µ µ for the objectives 

1 2
( )and ( ).Z Z respectively, are defined as 

follows: 

1 1

1 1
1 1 1

1 1
1 1

1 1

1, if Z (x) L

U -Z (x)
µ (z (x)) = , if L < Z (x)< U

L -U

0, if Z (x) U

 ≤




 ≥

(40)   

2 2

2 2
2 2 2

2 2
2 2

2 2

1, if Z (x) L

U -Z (x)
µ (z (x)) = , if L < Z (x)< U

L -U

0, if Z (x) U

 ≤




 ≥

 (41)   

1 1 1 1 1 1
where L U, if L=U,thenµ(Z(x))=1for anyvalueof Z≠

2 2 2 2 2 2
andL U.if L=U,thenµ(Z(x))=1for anyvalueof Z≠

. 
Following the fuzzy decision of Bellman and 
Zadeh [9] together with the linear membership 
function (40-41), a fuzzy optimization model of 
Two-objective Transportation Problem can be 
written as follows:    

P1:           Max    1 1
Minµ (z (x))  (42)                              

2 2
Minµ (z (x))   (43)   

subject to  
n

ij i
j=1

X = a∑  ,    i = 1,2,…,m  (44)   

m

ij j
i=1

X = b∑  ,    j = 1,2,…,n  (45)                     
 

xij ≥  0   for all i and j (46)   
By introducing an auxiliary variable λ, problem P1 
can be transformed into the following equivalent 
conventional linear programming problem [10]. 
P2:           Max λ     (47)   
subject to  

 1 1
λ µ (z (x))≤  (48)   

2 2
λ µ (z (x))≤ (49)   

n

ij i
j=1

X = a∑  ,    i = 1,2,…,m   (50) 

m

ij j
i=1

X = b∑  ,    j = 1,2,…,n   (51) 

0 λ 1,≤ ≤       (52)      

 xij ≥  0   for all i and j (53)      
In problem constraint (P2) can be reduced to the 
following form: 

1 1 1 1λ (U -L ) (U -Z (x))≤  

 1 1 1 1λ (U -L ) Z (x) U+ ≤  

1 1 1

1 1

λ (U -L ) Z (x)
1

U U
+ ≤     (54)   

In problem constraint (P2) can be reduced to the 
following form 

2 2 2 2λ (U -L ) (U -Z (x))≤  

2 2 2 2λ (U -L ) Z (x) U+ ≤  

2 2 2

2 2

λ (U -L ) Z (x)
1

U U
+ ≤      (55)   

To determine the degree of closeness of the 
fuzzy approach result to the ideal solution, let us 
define the following family of distance functions 
[8]  

1
k pp p

p k k
k=1

L (λ ,k) = λ (1-d ) ∑  
   (56)   

where dk represents the degree of closeness of 
the compromise solution vector X* to the ideal 
solution vector with respect to the k-th objective. 

1 2 kλ = ( λ , λ ,..., λ )  is vector of objective 

attention level. The power p represents a 

distance parameter 1 p .≤ ≤ ∞  

Definition: Ideal solution: The solution to the 
Two-objective Transportation Problem is a point 
X

1
*, X

2
* in the outcome space such that 

1* 2*

2 2Z (x ), Z (x ) is an optimal objective 

function value of the sub problems:  
m n

1 ij ij
i=1 j=1

Minimize Z = c x∑∑  

m n

2 ij ij
i=1 j=1

Minimize Z = d x∑∑  

subject to the given set of constraints. 

Assuming 
k

k
k=1

λ = 1,∑ (k =1, 2) we can write 

pL (λ ,K) with p = 1,2,and ∞  

as follows: 

1L (λ ,K) =
k

k k
k=1

1- λ d ∑  
  (57)   

 
k

2 2

2 k k
k=1

1
2

L (λ ,K) = λ (1-d ) ∑  
 (58)   

k k kL (λ ,K) = Max {λ (1-d )}
∞

  (59) 

           where in the minimum problem dk takes 
the form: 

k
k

k

The ideal value of Z (x)
d =

The compromise value of Z (x)
 (60) 
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Thus, we can state that the approach which gives 
a compromise solution close to the ideal solution, 
is better than the other if 

Min  pL (λ ,K)  (61) 

is achieved for its solution with respect to some p. 
Example 1. 
Let us consider two-objective transportation 
problems with following characteristics: 
Supplies: -         a1 = 8,  a2 = 19,   a3 = 17.    
Demand: -        b1 = 11,   b2 = 3,  b3 = 14,   b4 = 
16.   
Penalties: 

 
1

1 2 7 7

C = 1 9 3 4

8 9 4 6

 
 
 
  

,      

2

4 4 3 4

C = 5 8 9 10

6 2 5 1

 
 
 
  

 

This problem can be modeled as follows: 

1Minimize Z = x11 + 2x12 + 7x13 + 7x14 + x21 

+ 9x2 2+ 3x23  + 4x24 +8x31 

+ 9x32 + 4x33 + 6x34     (62)   

2Minimize Z =  4x11 + 4x12 + 3x13 + 4x14 + 

5x21 + 8x2 2+ 9x23  + 10x24               

+6x31 + 2x32 + 5x33 + 1x34    (63)   
subject to

   

4 4 4

1j 2j 3j
j=1 j=1 j=1

x 8, x 19, x 17.= = =∑ ∑ ∑  

3 3 3 3

i1 i2 i3 i4
i=1 i=1 i=1 i=1

x 11, x 3, x 14, x 16. = = = =∑ ∑ ∑ ∑

(64)  
 

xij ≥ 0,      i = 1,2,3,  j = 1, 2,3,4. (65)       
where C

1
= (C

1
ij)   ,     C

2
 =(C

2
 ij).   

Step 1 and step 2:  
Optimal solution, which minimizes the first 
objective Z1 subject to constraints (64-65) are as 
follows: 
X11   = 5,     X12   = 3,        X21, = 6,      X24, = 13,  X33  = 
14,  X34 = 3.    
With  Z1(X1) = 143,       Z2(X1) = 208,  
Optimal solutions, which minimizes the second 
objective Z2 subject to constraints (64-65) are as 
follows: 
X13   = 8 ,       X21 = 11,   X22, = 2,  X23  = 6,      X32 = 
1,     X33 = 16.      
With  Z1(X1) = 167,  Z2(X1) = 265. 
Step 3:  Pay-off matrix is 

* *

1 2

1

2

X X

Z 143 208

Z 265 167

 
 
 

     

From the pay-off matrix, we find the upper and 
lower bound of each objective as follows: 
U1 = 208,    L1  = 143,  
U2 = 265,    L2 = 167,   
Find { xij, i = 1,2,3;  j = 1,2,3,4.} so as to satisfy 

1 2Z 143, Z 167≤ ≤ and constraints (64-65) 

Step 4: 
If we use hyperbolic membership function, with  

1
1 1

66
α = ,

(U - L ) 65
=

2

2 2

66
α =

(U - L ) 98
=       

1 1 2 2U + L U + L
= 175.5, 216,

2 2
=  

we get the membership functions 
HH

1 1 22
( ) and ( )Z Zµ µ for the objectives  

1 2
( ) and ( )Z Z respectively, are defined as 

follows: 

( )

1

1 1 1 1

1

1, if Z (x) 143

1 6 1Hµ ( Z )= tanh 175.5-Z (x) + , if 143 Z (x) 208
2 65 2

0, if Z (x) 208

≤

  

≤ ≤  
 

 ≥

( )

2

2 2 2 2

2

1, if Z (x) 167

1 6 1H
µ ( Z )= tanh 216- Z (x) + ,  if 167 Z (x) 265

2 98 2

0, if Z (x) 265

≤

  

≤ ≤  
 

 ≥

 
Step 5: 
We get an equivalent crisp model, which can be 
formulated as:   
Maximize Xmn+1 
subject to  

1 mn+16 [ Z ]+ 65X 1053≤   

2 mn+16 [ Z ]+ 98X 1296≤  

constraints (64-65) and Xmn+1 ≥  0                                   
The problem was solved by the Linear Interactive 
and Discrete Optimization (LINDO) Software The 
optimal solution is presented as follows: 
Xmn+1 = 1.351464, X11  = 3.785216,  X12  = 3.0,  
X13 = 1.214784,    
X21  = 7.214784,  X23 = 11.785216,  X33 = 1.0, 
X34    = 16.0, and  λ = 0.937          
Transportation cost Z1   = 160. 8591, 
Deterioration of goods Z2  = 193. 926. 
Ringuest and Rinks [6] have obtained 186 and 
174 as the interactive approach values of 
objectives Z1 and Z2 respectively  
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Table 1- 
Objective 
function 

Ideal 
solution 

Fuzzy 
approach 
 results 

Interactive 
approach  
results 

Z1(x) 143 160. 8591, 186 

Z2(x) 167  193. 926. 174 

The example is solved by the given interactive 
approach in [6]. The procedure begins with 
constructing a linear compromise solution and a 
search is conducted among all non-dominated 
solutions corresponding to extreme points 
adjacent to the most preferred extreme point. This 
search is continued until a satisfactory solution is 
obtained. Solution of the above example by using 
this procedure is summarized in table 1.    
Using fuzzy programming (with hyperbolic 
membership function) approach the result is as 
follows: 

Assuming 
k

k
k=1

λ = 1,∑ we can write 

kL (λ ,K) with p = 1,2,and ∞ as follows: 

1 2λ = λ = 1/2 , i. e. the objectives are equally 

important   

1L (λ ,K)  = 
k

k k
k=1

1- λ d ∑  
 

=  0.5{(1-0.8889)+(1-0.8612)} 
=  0.125 

2 2 2

2

1
2L (λ ,K) = (o.5) {1-0.8889) +(1-0.0.8612) }  

 

     = 0.08889 

k k kL (λ ,K) = Max {λ (1-d )}
∞

 

L (λ ,K) = (0.5){(1 0.8612)}
∞

−  

                         =  0.0694 
Interactive approach the results 

Assuming 
k

k
k=1

λ = 1,∑ we can write 

kL (λ ,K) with p = 1,2,and ∞ as follows: 

1 2λ = λ = 1/2 , i. e. the objectives are equally 

important   

1L (λ ,P)    =    0.5{(1-0.7688) + (1-0.9598)} 

                          =    0.1357 

2 2 2

2

1
2L (λ,K) = (o.5) {1-0.7688) +(1-0.9598) }  

 
                           = 0.1173 

L (λ ,K) = (0.5){(1 0.7688)}
∞

−  

                          =  0.1156 
 
 

Table 2- Numerical values of L1, L1 and L∞ 

Objective 
function 

Ideal 
solution 

Fuzzy 
approach 
 results 

Interactive 
approach  
results 

  Z1(x) 143 160. 8591, 186 

  Z2(x) 167 193. 926. 174 

    d1 -- 0.8889 0.7688 

    d2 -- 0.8612 0.9598 

    L1  -- 0.125 0.1357 
    L2 -- 0.08889 0.1173 
    L∞  -- 0.0694 0.1156 
The family of the distance functions for solutions 
of the given fuzzy approach and the interactive 
procedure [6] are summarized in table 2. In 
above example it is observed that the fuzzy 
approach gives compromise solution better than 
the interactive compromise solution with respect 
to L1. L2 and L∞.  
If we use the linear membership function as 
defined in (40-41), an equivalent crisp model can 
be presented as follows: 
We get the membership function 

1 2
(x ) and (x ),µ µ for the objectives 

1 2
( )and ( ).Z Z respectively, are defined as 

follows: 

1

1
1

1

1

0, if Z (x) 143

208 Z (x)
µ (x) = , if 143 Z (x) 208

208-143

1, if Z (x) 208

≤


−
< <


≥

 

2

2
2

2

2

0, if Z (x) 167

265 Z (x)
µ (x) = , if 167 Z (x) 265

265-167

1, if Z (x) 265

≤


−
< <


≥

 
Now (54) is written as follows:  

1λ (208-143) Z (x)
1

208 208
+ ≤  

(55) is written as follows : 

2λ (265-167) Z (x)
1

265 265
+ ≤

 

The equivalent linear programming problem of 

this example is given below  

Maximize λ  
Subject to 
0.0048x11 + 0.0096x12 + 0.0337x13 + 0.0337x14 + 
0.0048x21 +  0.0433x22+ 0.01442x23  + 0.0192x24     
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+0.0385x3 + 0.0433x32 + 0.0192x33  + 0.02881x34 

0.3125λ 1+ ≤  

0.0151 + 0.0151 x12 + 0.01132 x13 + 0.01509 x14 + 
0.01887 x21 + 

0.03019x22+ 0.03396x23  + 0.03774x24 

+0.02264x31 +0.007547x32 + 0.01887x33  +                

0.00377x34 0.3698λ 1+ ≤   

x11 + x12 + x13 + x14 = 8 
x21 + x2 2 + x23 + x24  = 19 
x31 + x32 + x33 + x34  = 17 
X11+ X21 + X31 = 11 
x12 + x2 2 + x32 = 3 
x13  + x23 +  x33 = 14 
x14 + x24  + x34  = 16 

xij ≥ 0,  i = 1,2,3, ,  j = 1, 2,3,4.  and λ ≥  0                                  

 The problem was solved by the Linear Interactive 
and Discrete Optimization (LINDO) Software The 
optimal solution is presented as follows: 
X11  = 3.765676,   X12  = 3.0,   X13 = 1.234324,  
X21  = 7.234324,   X23 = 11.765676,  X33 = 1.0,  
X34    = 16.0, and     λ = 0.726343    
Transportation cost Z1   = 160.9368, 
Deterioration of goods Z2  = 193.8273. 
The family of distance functions for solutions of 
the given fuzzy linear membership approach and 
the interactive procedure [6] are summarized in 
table 3.         
Table 3 
Objective 
function 

Ideal 
solution 

Fuzzy 
approach 
 results 

Interactiv
e 
approach  
results 

  Z1(x) 143 160. 9368,   186 

  Z2(x) 167 193. 8373.  174 

    d1 -- 0.8885         
0.7688 

    d2  -- 0.8615         
0.9598 

    L1 -- 0.125         
0.1357 

    L2  -- 0.08890         
0.1173 

    L∞ -- 0.06925         
0.1156 

The family of the distance functions for solutions 
of the given fuzzy approach and the interactive 
procedure [6] are summarized in table 3. In above 
example it is observed that the fuzzy approach 
gives compromise solution better than the 
interactive compromise solution with respect to 
L1. L2 and L∞  
 
Conclusion 
In the present paper, fuzzy linear and non- linear 
programming technique has been used to find an 
optimal compromise solution for Two-objective 
Transportation Problem. If we use the hyperbolic 
membership function, then the crisp model 
becomes linear. The optimal compromise solution 

does not change if we compare with the solution 
obtained by the linear membership function. 
Further, we conclude that for a transportation 
problem if the demand parameters are gamma 
random variables, then the deterministic problem 
becomes non-linear. To solve this type of 
problem, these non-linear membership functions 
can be used Apart from the transportation 
problems for the multiobjective non-linear 
programming problems, non-linear membership 
functions are useful. The family of the distance 
functions for solutions of the given Fuzzy 
programming (with Hyperbolic and Linear 
membership function) approach and the 
interactive procedure [6] are summarized in table 
2 or 3. In above example it is observed that the 
fuzzy approach gives compromise solution better 
than the interactive compromise solution with 
respect to L1. L2 and L∞. As a result, adaptation 
of the fuzzy approach leads to better solution 
than the interactive algorithm.    
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