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Abstract- Synthetic Aperture Radar (SAR) System generates the large volume of the data and the ability to transmit it to the 
ground, or to store it, is not increasing as fast, due to practical constraints imposed in the system design. This shortfall 
prompts interest in compression-decompression strategies for rapid transmission of images. Transform coding based on the 
Discrete Cosine Transform (DCT), and the Discrete Wavelet Transform (DWT) is well understood for optical images but has 
not been well studied for SAR Images. Wavelets have been introduced as a signal-processing tool and they are widely used 
in image compression applications. The transform in wavelet and multiwavelet domain is capable of compacting the energy 
of image into a small number of coefficients, localized in both space and frequency. But the wavelet transform has got more 
importance due to its manifold characteristics i.e. high compression ratio, multi-resolution in nature, use of different basis 
functions that lead to the desirable property of characterizing and localizing signal features in frequency domains. In this 
paper, we have evaluated the performance of Discrete Cosine Transform, Block Truncation Coding (BTC), Gaussian 
Pyramidal (GP) and Multiwavelet Transformation (MWT). Mean squared Error (MSE), Maximum Absolute Error (MAE), 
Signal to Noise Ratio (SNR), Peak signal to noise ratio (PSNR), Compression Ratio (CR), is used as objective performance 
criteria. Based on the observation of the above performance evaluation system, the promising result has been depicted i.e 
on an average compression 70% to 77% and RE 96.Objective of exploiting features MWT for compression of SAR images 
has been shown.  
Keywords- Discrete Wavelet Transform (DWT), Gaussian Pyramidal Coding, Mutiwavelet Transform (MWT), Synthetic 
Aperture Radar (SAR) 
 
Introduction 
The Synthetic Aperture Radar (SAR) images play an 
important role in many applications including ecology, 
geology, surveillance, oceanography, glaciology, and 
agriculture. SAR images can provide unique information 
about the surface of the Earth by using the motion of a 
satellite or an airplane they are mounted on [1,2,3,4].SAR 
has ability to penetrate the cloud cover and doesn’t 
depends on any external source of the energy like sun rays. 
With the improvement of SAR technology, larger areas are 
imaged and higher resolution sensors are considered for 
many applications. This causes the volume of data 
associated with SAR images to be extremely large, thus 
effective compression of SAR images is highly required in 
order to reduce the burden of storage and transmission. 
There are some special characteristics of SAR imagery that 
differentiate it from normal optical images. The first is the 
speckle noise phenomenon due to the coherence of radar 
radiation and the multi-look nature of SAR images [5-11]. 
Speckle noise represents the most significant noise in SAR 
images. The second is that there are large homogeneous 
regions as well as detailed texture information in SAR 
images. Synthetic Aperture Radar (SAR) instruments 
transmit radar signals and then measures how strongly the  

 
signals are scattered back. A single antenna moving along 
the flight line acquires the data and the effect is similar to 
using an array of antennas. The target is illuminated several 
times from different locations generating numerous echoes 
that are recorded coherently (i.e., amplitude and phase as a 
function of time) and subsequently combined to synthesize 
a linear array. A higher spatial resolution is achieved 
independently of the distance between sensor and target 
and by a small antenna. One of the major constraints in the 
design and operation of current SAR systems is the 
unavailability of a downlink with a high data rate. The data 
rate of each channel is proportional to the pulse repetition 
frequency, the number of sampled values in each received 
echo, and the number of quantization bits in each sample. 
Since reducing the data rate deteriorates the system 
performance, data compression is required. Radar system 
produces a mass of data for objects imaging. However, with 
the rapidly increasing data collection capacity, its ability to 
transmit and store data is relatively weaker. Many measures 
can reduce data rate while depressing the whole running 
effect of the system. For instance, reducing pulse repeating 
frequency would introduce blurred azimuth and reduced 
azimuth resolution unless the system use longer azimuth 
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antenna. Also, reducing range resolution would depress 
system bandwidth. Only to simply reduce quantified bits 
would increase digitized noise, and as a result damage the 
pulse response function, image dynamic range and 
radiation accuracy [12,13]. Therefore, in order to improve 
SAR system, data compression algorithms with high 
efficiency have become an important objective.  
 
Principles of Transform Coding 
A general transform coding scheme involves subdividing an 
NxN image into smaller nxn blocks and performing a unitary 
transform on each sub image [14-17]. A unitary transform is 
a reversible linear transform whose kernel describes a set 
of complete, orthonormal discrete basic functions. Typical 
examples are transform-coding methods, in which the data 
is represented in a different domain (for example, frequency 
in the case of the Fourier Transform [FT], the Discrete 
Cosine Transform [DCT], the Kahrunen-Loewe Transform 
[KLT], and so on)[18-21], where a reduced number of 
coefficients contain most of the original information. In many 
cases this first phase does not result in any loss of 
information. The aim of quantization is to reduce the amount 
of data used to represent the information within the new 
domain. Quantization is in most cases not a reversible 
operation: therefore, it belongs to the so-called 'lossy' 
methods. Data compression algorithms can be classified as 
lossless and lossy [18]. Lossless compression algorithms 
such as Huffman coding, arithmetic coding, run-length 
encoding, and Lempel-Ziv coding are used when exact 
reconstruction of the original data set is necessary. Lossy 
compression algorithms such as predictive coding, 
transform/ subband coding, vector quantization, and fractal 
coding are used for applications in which some degree of 
degradation of the data is tolerable and/or high compression 
ratio is preferred [18-24, 37]. 
 
Discrete Cosine Transform 
The 1-D discrete cosine transform (DCT) is defined as 
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Similarly, the inverse DCT is defined as 
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The corresponding 2-D DCT, and the inverse DCT are 
defined as 
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The advantage of DCT is that it can be expressed without 
complex numbers. 2-D DCT is also separable (like 2-D 
Fourier transform), i.e. it can be obtained by two 
subsequent 1-D DCT in the same way as Fourier 
Transform. For analysis of two-dimensional (2D) signals 
such as images, we need a 2D version of the DCT. For an n 
x m matrix C, the 2D DCT is computed in a simple way: The 
1D DCT is applied to each row of C and then to each 
column of the result. Since the 2D DCT can be computed by 
applying 1D transforms separately to the rows and columns, 
we say that the 2D DCT is separable in the two dimensions. 
 
Multiwavelet 
The basic idea to wavelets is to analyze (a signal) according 
to scale. Multiwavelets constitute techniques, which have 
been added to wavelet theory in recent years [25-34].Many 
authors tried to exploits wavelet domain techniques for SAR 
image processing applications [35-36]. Recently, much 
interest has been generated in the study of the 
multiwavelets, where more than one scaling function and 
mother wavelet are used to represent a given signal. In the 
wavelet and other transform coding bases function is single 
and does not change, but in multiwavelets multiple basis 
function is possible [38-51].  In contrast to the limitations of 
scalar wavelets, multiwavelets are able to possess the best 
of all these properties simultaneously. Second, one 
desirable feature of any transform used in image 
compression is the amount of energy compaction achieved. 
A filter with good energy compaction properties can 
decorrelate a fairly uniform input signal into a small number 
of scaling coefficients containing most of the energy and a 
large number of sparse wavelet coefficients. This becomes 
important during quantization since the wavelet coefficients 
are typically represented with significantly fewer bits on 
average than the scaling coefficients. 
 
Multiscaling functionality in the Multiwavelet 
Multiwavelets are characterized with several scaling 
functions and associated wavelet functions. Let the scaling 
functions be denoted in vector form as Φ(t) = [Φ1(t), Φ2(t), . . 
. , Φr(t)]T, where Φ(t) is called the multiscaling function, T 
denotes the vector transpose and Φj(t) is the jth scaling 
function. Likewise, let the wavelets be denoted as Ψ(t) = 
[ψ1(t), ψ2(t), . . . , ψr(t)] T, where ψj(t) is the jth wavelet 
function. Then, the dilation and wavelet equations for 
Multiwavelet take the following forms, respectively: 
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Multiwavelet bases of multiplicity r provide a multi-resolution 

analysis is 
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of L2 (R) using the Multiwavelet 
function Ψ(t)  and multiscaling function Φ(t). 
 
The jth scaling space is given by  
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The jth wavelet space is given by  
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Where Vj┴ Wj. The multi scaling function satisfied the 
above r-scale equation (6). Where Hk and Gk are r x r 
matrix coefficients of low pass multifilters and high pass 
multifilters. The low pass filters H and the high pass filter G 
is r x r matrix filters, instead of scalars. In theory, r could be 
as large as possible, but in practice it is usually chosen to 
be two i.e r =2 [10, 32]. 
The wavelet transform has proved to be an efficient tool for 
many image processing applications. By means of lowpass 
and highpass filters, at each step, the image (or an 
approximation of the image), belonging to a subspace Vj , is 
decomposed into its projection onto 2 subspaces: an 
approximation subspace Vj−1 and a detail subspace Wj−1, 
both having less resolution. When the process is completed, 
the image is represented as the sum of its details at 
different resolutions and positions, plus a coarse 
approximation of the same image. The approximation 
subspaces Vj , which are nested, are the linear span of the 
scaling function Φ (or a scaled version of Φ) and its integer 
translates. The detail subspaces Wj are the linear span of 
the wavelet Ψ (or a scaled version of Ψ) and its integer 
translates. We call (Φ, Ψ) a wavelet system. In one 
dimension, the different scales are powers of a dilation 
factor, most commonly equal to 2. To process an image, the 
tensor product of one-dimensional filters is used; the details 
lie mainly in the vertical and horizontal directions, which 
does not agree with our visual system Multiwavelets, related 
to time–varying filterbanks, are a generalization of the 
wavelet theory, in which the approximation subspaces Vj 
are the linear span of more than one scaling function. They 
offer a greater degree of freedom in the design of filters. 
The Multiwavelet used here has two channels, so there will 
be two sets of scaling coefficients and two sets of wavelet 
coefficients. Thus the two-dimensional image data, after 
one level multiwavelet decomposition are replaced by 
sixteen blocks corresponding to the subbands. The sixteen 
blocks represent either low pass or high pass filtering in 
each direction, not four blocks in scalar wavelet 
decomposition. For two-level multiwavelet decomposition, 
the four low frequency subbands are decomposed into 
sixteen blocks again. 
 
Compression Method 
The primary goal is to apply the multiwavelets on the image 
with prefiltering and observe the perceptual quality of the 
image. Applying the multiwavelets successively on the 
decomposed image and measure the performance. We 
retain the same number of largest coefficients for each 

multiwavelet, and then invert the algorithm to reconstruct 
the image and measure the performance of each 
multiwavelet by assessment criteria. One of the major tasks 
in realizing multiwavelets is, using the efficient prefilter in 
the processing. In the case of scalar wavelets, the given 
signal data are usually assumed to be the scaling 
coefficients that are sampled at a certain resolution, and 
hence, we directly apply multi-resolution decomposition on 
the given signal. But the same technique cannot be 
employed directly in the multiwavelet setting and some 
prefiltering has to be performed on the input signal prior to 
multiwavelet decomposition. The type of the prefiltering 
employed is critical for the success of the results obtained in 
application. And therefore selection of the best prefilter 
becomes the big challenge for the different characteristic 
images. A simple threshold compression method has been 
applied based on the following steps:  

1) Apply the prefiltering techniques on the image 
2) Apply the multiwavelets 
3) Reconstruct the image by inverse transformation, 

keeping the largest number of the coefficient. 
4) Decompose the image and repeat the step 1 and 

3, keeping the largest number of the coefficient. 
 
Assessment Criteria 
An SAR image compression algorithm is judged by its ability 
to minimize the distortion while retaining all significant 
features of the image. The distortion in reconstruction has 
been computed by means of the following formula:  
The mean square error is one of the most commonly used 
performance measures in image and signal processing. For 
an image of size NxM it can be defined as  
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Maximum Absolute Error (MAE) 
Maximum absolute error shows the worst-case error 
occurring in the compressed image.  

),(ˆ),(
1-Nnm,0

max MAE nmxnmx 


                 (12) 

 
Retain Energy (RE) 

2
alsignal))(vn(origin

2
)(vn(ccd,2)*100

RE                                        (13) 

 



Multiwavelet transformation for sar image coding: performance evaluation for lossy compression 

 

29 
Journal of Signal and Image Processing 

ISSN: 0976-8882 & E-ISSN: 0976-8890, Vol. 2, Issue 1, 2011 

Where vn is the vector norm, ccd is the coefficients of the 
current decomposition [30].  
Compression Ratio  

)files(byte compressed  theof size

)files(byte original  theof size
CR      (14) 

 
Experimental results and Discussion 
Experiments are performed with a radar image acquired by 
the Spaceborne Imaging Radar-C/X-Band Synthetic 
Aperture Radar (SIR- C/X-SAR) aboard the space shuttle 
Endeavour on October 9, 1994. The colors are assigned to 
different frequencies and polarizations of the radar as 
follows: Red is L-band vertically transmitted, vertically 
received; green is the average of L-band vertically 
transmitted, vertically received and C-band vertically 
transmitted, vertically received; blue is C-band vertically 
transmitted, vertically received. The image is located at 
19.25 degrees north latitude and 71.34 degrees east 
longitude and covers an area 20 km by 45 km (12.4 miles 
by 27.9 miles). We have used 256×256 sc-lval4.jpg image 
characteristics to demonstrate the performance of the 
system.  
Frequency domain techniques like DCT, BTC, GP are used 
for decomposing and reconstruction of the SAR image. 
Multiwavelet domain techniques (MWT) like haar, d4, la8, 
bi9, bi7, bi5, bi3, cl, sa4, bighm6 are used for decomposing 
the SAR image. Prefiltering is done by using multiwavelets 
transform namely bih5ap. The biorthogonal multiwavelet 
transformation bighm6 is used in the reconstruction. The 
SAR image data is normalized so that the minimum and 
maximum pixel values are 0 and 1, respectively and 
processing is done. Resultant data of each transformation 
are tabulated in the Table 1, Table 2 respectively. 
Corresponding graphs are also used for the interpretation 
and visual perception of the SAR image as indicated in the 
figures (fig. 1(a-c), fig.2(a-o) and fig.3(a-z, aa-ab). Based on 
this data collected from the different techniques 
performance for the compression is measured using the 
assessment criteria. We have observed that the 
reconstructed image with these multiresolution techniques 
for decomposition and reconstruction yielded the highest 
perceptual quality, high PSNR and good compression. We 
have observed that size of the compressed file decreases 
as the decomposition level increases from level-1 to level-5, 
but the visual quality of the image also degrades. So it 
indicates that as the image is decomposed for the more 
levels, in each step the more detail coefficient of the image 
will be losing and it results in reduction of the image size. 
Performance of multiwavelet transformation techniques is 
very well in terms of human visual impact so as to 
interpretation and analysis of the SAR image. The variation 
in the MSE and PSNR are the noticeable point at different 
decomposition level. Less MSE indicates the best visual 
quality. If we increase the level of decomposition the 
computational complexity will increase. At decomposition 
level-1, biorthogonal multiwavelet transforms bi3 and 
bighm6 gives good compression as well as good visual 
quality. At decomposition level-2, sa4 and bighm6 gives 
excellent variation in the compression. From Decomposition 

level-3 to level-5 all multiwavelet transformation  
haar,d4,la8,bi9,bi7,bi5,bi3,cl,sa4,bighm6 gives good 
compression ratio but there is variation in the visual quality 
of the SAR image. 
 
Conclusion 
Based on the experimental work carried by using the DCT, 
BTC, GP and MWT transformations, we got the highest 
compression by using biorthogonal multiwavelets bighm6 at 
decomposition level-4 and level-5 i.e. 70.84% and 77.87% 
respectively.  
Performance of above transformation techniques has been 

evaluated through human visual impact and objective 

methods (MSE, PSNR, CR).  Less MSE indicates the good 

quality of image. However the variation in the MSE and 

PSNR are the noticeable point at different decomposition 

level. If we increase the level of decomposition the 

computational complexity will increase. So it is concluded 

that, multiscaling functionality of multiwavelet transformation 

can be exploited for lossy compression of SAR image. It 

reduces the computational complexity and gives promising 

results.  
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CT: Compression Techniques 

Table I-Shows the Compression of SAR Image in percentage for DCT, BTC and GP 
 

CT DL SNR PSNR RE CR MSE MAE 
Compression 

% 

DCT - 27.31896 18.41867 99.9647 2.79901 0.01439 0.67718 64.27304 

BTC(4x4) - 57.23163 21.52011 99.9704 1.03552 0.00705 0.50588 3.42992 

GP - 18.98422 16.99172 98.8729 2.55576 0.01999 0.73333 60.87269 
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Table II- Shows the Compression of SAR Image in percentage for MWT 

MWT DL SNR PSNR RE CR MSE MAE Compression % 

haar 

1 4.90512 10.75287 98.5642 1.05598 0.08408 1.33783 5.30117 

2 3.87420 9.99447 99.9004 1.69524 0.10013 1.04752 41.01124 

3 2.71307 8.59836 99.0098 2.24568 0.13809 1.04311 55.47014 

4 3.28083 9.50658 99.1487 2.62752 0.11203 1.03032 61.94137 

5 3.23824 9.67072 95.4534 2.94783 0.10788 0.92776 66.07671 

d4 

1 5.04700 10.89771 98.2155 1.06290 0.08133 1.38838 5.91788 

2 3.90894 10.07297 98.8153 1.68390 0.09833 1.05939 40.61418 

3 2.56069 8.40576 97.2635 2.24080 0.14435 1.09103 55.37298 

4 3.04391 9.44469 92.6699 2.61591 0.11364 1.07930 61.77241 

5 2.33560 8.82197 83.7749 2.80564 0.13116 0.95372 64.35752 

la8 

1 4.78177 10.79997 94.7189 1.06257 0.08318 1.99610 5.88832 

2 2.60769 8.73308 89.2562 1.61652 0.13387 1.88796 38.13889 

3 1.27050 6.24544 78.5178 2.02654 0.23739 1.96077 50.65473 

4 0.79122 5.00839 66.5768 2.47042 0.31562 1.95600 59.52099 

5 0.33335 3.77101 37.9745 3.25237 0.41966 1.80363 69.25319 

bi9 

1 3.71121 9.73736 92.9306 1.02312 0.10623 2.00272 2.25986 

2 1.92280 7.68059 83.8720 1.59582 0.17059 1.72297 37.33632 

3 1.01865 5.59026 73.5877 1.98358 0.27604 1.79238 49.58604 

4 0.58045 4.68539 52.7282 2.41547 0.33999 1.81712 58.60015 

5 0.14390 3.45657 17.3578 3.27759 0.45117 1.56734 69.48974 

bi7 

1 3.90900 10.00430 93.3460 1.07020 0.09990 1.85576 6.55994 

2 1.89711 7.51705 85.0618 1.55709 0.17713 1.79066 35.77765 

3 1.01937 5.40277 75.7917 1.92848 0.28822 1.85317 48.14565 

4 0.60509 4.52806 56.3446 2.38529 0.35253 1.80159 58.07637 

5 0.16247 3.25704 20.3671 3.25192 0.47238 1.61466 69.24897 

bi5 

1 3.48742 8.80835 98.0660 0.87825 0.13157 2.22859 -13.86331 

2 2.90410 8.58664 95.7723 1.30493 0.13846 2.17500 23.36741 

3 1.69634 6.70608 90.0768 1.90305 0.21350 2.25797 47.45290 

4 1.14189 5.79486 76.3184 2.59214 0.26334 1.90977 61.42181 

5 0.63059 4.21230 63.3451 3.36757 0.37911 1.97212 70.30498 

bi3 

1 4.34608 10.96587 79.0717 1.64311 0.08006 1.60645 39.13998 

2 3.59004 10.11190 91.4797 1.88427 0.09746 1.73797 46.92912 

3 1.77578 7.54806 83.2289 2.02066 0.17587 1.93321 50.51111 

4 1.14482 6.43671 70.1976 2.18516 0.22716 1.70855 54.23672 

5 0.55724 4.72865 50.8857 2.54177 0.33662 1.91759 60.65726 

cl 

1 4.62771 10.44071 94.9160 0.99865 0.09035 1.61102 -0.13517 

2 4.99336 11.19173 99.1507 1.89939 0.07600 0.96076 47.35152 

3 3.07259 9.15369 98.7782 2.15238 0.12152 1.00492 53.53975 

4 2.92181 9.08895 96.4340 2.30449 0.12334 1.01627 56.60640 

5 3.07601 9.46682 94.7206 2.43510 0.11306 0.99179 58.93385 

sa4 

1 8.68441 13.46043 97.0326 1.49193 0.04508 1.30929 32.97288 

2 6.28101 12.11146 99.6942 1.73246 0.06150 1.10624 42.27845 

3 4.15100 10.39649 99.3332 1.96383 0.09127 1.07047 49.07916 

4 2.67392 8.55005 99.6855 2.19753 0.13964 1.00261 54.49438 

5 2.74146 8.84953 96.7485 2.47558 0.13033 1.17195 59.60547 

bighm6 

1 15.45442 16.01531 99.6370 1.53409 0.02503 0.84272 34.81456 

2 14.89749 15.95320 99.1535 2.47662 0.02539 0.80452 59.62237 

3 12.01382 15.05948 99.0481 3.13854 0.03119 0.80488 68.13804 

4 9.81978 14.20490 100.1642 3.42903 0.03798 0.81815 70.83721 

5 7.05364 12.99185 96.1499 4.51880 0.05021 0.78366 77.87024 
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Fig. 1. (a) SNR, PSNR & RE Fig. 1. (b) MAE, CR & MSE 

 
 

Fig 1. (c)  Compression in % Fig. 2. (a) SNR, PSNR & RE at Decomposition Level-1. 

  
Fig. 2. (b) MAE, CR & MSE at Decomposition Level-1. Fig. 2. (c) Compression in percentage at Decomposition Level-1. 
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Fig. 2. (d) SNR, PSNR & RE at Decomposition Level-2. Fig. 2. (e) MAE, CR & MSE at Decomposition Level-2. 

  
Fig. 2. (f) Compression in percentage at Decomposition Level-2. Fig. 2. (g) SNR, PSNR & RE at Decomposition Level-3. 

 
 

Fig. 2. (h) MAE, CR & MSE at Decomposition Level-3. Fig. 2. (i) Compression in percentage at Decomposition Level-3. 

  
Fig. 2. (j) SNR, PSNR & RE at Decomposition Level-4. Fig. 2. (k) MAE, CR & MSE at Decomposition Level-4. 
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Fig. 2. (l) Compression in percentage at Decomposition Level-4. Fig. 2. (m) SNR, PSNR & RE at Decomposition Level-5. 

  
Fig. 2. (n) MAE, CR & MSE at Decomposition Level-5. Fig. 2. (o) Compression in percentage at Decomposition Level-5. 

 
 

   
 

Fig 3. (a)  lval4.jpg original 
SAR image [256x256] 

Fig 3. (b) Histogram of fig3.(a) Fig 3. (c) compressed 
Image using BTC 

Fig 3. (d) Histogram of fig3.(c) 

  
 

 
Fig 3. (e) compressed Image 
using GP 

Fig 3. (f) Histogram of fig3.(e)  Fig 3. (g) compressed 
Image using haar 

Fig 3. (h) Histogram of fig3.(g)  
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Fig 3. (i) compressed Image 
using D4 

Fig 3. (j) Histogram of fig3.(i)  Fig 3. (k) compressed 
Image using La8 

Fig 3. (l) Histogram of fig3.(k) 

  

 

 

Fig 3. (m) compressed Image 
using Bi9 

Fig 3. (n) Histogram of 
fig3.(m)   

Fig 3. (o) compressed 
Image using Bi7 

Fig 3. (p) Histogram of fig3.(o) 

    

Fig 3. (q) compressed Image 
using Bi5 

Fig 3. (r) Histogram of fig3.(q)    Fig 3. (s) compressed 
Image using Bi3 

Fig 3. (t) Histogram of fig3.(s) 

 
 

  

Fig 3. (u) compressed Image 
using Cl 

Fig 3. (v) Histogram of fig3.(u)   Fig 3. (w) compressed 
Image using Sa4 

Fig 3. (x) Histogram of fig3.(w) 

 
   

Fig 3. (y) compressed Image 
using Bighm6L1 

Fig 3. (z) Histogram of fig3.(y)   Fig 3. (aa) compressed 
Image using Bighm6L3 

Fig 3. (ab) Histogram of fig3.(aa)  

 


