
Bioinfo Publications 25

ANALYZING THE CUDA APPLICATIONS WITH ITS LATENCY AND BANDWIDTH TOLERANCE

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012, pp.-25-30.
Available online at http://www.bioinfo.in/contents.php?id=322

PISTULKAR V.N. AND UTTARWAR C.A.

Department of Computer Science, Jawaharlal Darda Institute of Engineering & Technology, Yavatmal, MS, India.
*Corresponding Author: Email-vrushali118@gmail.com, chaitaliuttarwar@gmail.com

Received: February 21, 2012; Accepted: March 15, 2012

Abstract- The CUDA scalable parallel programming model provides readily-understood abstractions that free programmers to focus on
efficient parallel algorithms. It uses a hierarchy of thread groups, shared memory, and barrier synchronization to express fine-grained and
coarse-grained parallelism, using sequential C code for one thread. This paper explores the scala- bility of CUDA applications on systems
with varying interconnect latencies, hiding a hardware detail from the programmer and making parallel programming more accessible to non-
experts. We use a combination of the Ocelot PTX emulator [1] and a discrete event simulator to evaluate the UIUC Parboil benchmarks [2]
on three distinct GPU configurations. We find that these applications are sensitive to neither interconnect latency nor bandwidth, and that
integrated GPU-CPU systems are not likely to perform any better than discrete GPUs or GPU clusters.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

 Introduction
 While single-thread performance of commercial super scale rmi-
croprocessors is still increasing, a clear trend today is for com-
puter manufacturers to provide multithreaded hardware hat
strongly encourages software developers to provide explicit par-
allelism when possible. One important class of parallel computer
hardware is the modern graphics processing unit(GPU)
[22,25].With contemporary GPUs recently crossing that flop barri-
er [2,34] and specific efforts to make GPUs easier to program for
non-graphics applications [1, 29, 33], there iswidespread interest
in using GPU hardware to accelerate nongraphicsapplica-
tions.Obviously this is undesirable. A developer for a parallel or
distributed system is presented with a nearly unmanageable
degree of complexity. Should data be redundantly computed in
parallel or broadcast from a single node? Will CPU throughput or
network bandwidth be the bottleneck? Are random mem- ory
accesses significantly slower than sequential accesses? Is hard-
ware acceleration available for common math functions? At some
point, the complexity becomes significant enough that application
development for parallel systems becomes intractable.

We argue that abstractions are needed to reduce the com-plexity
of programing parallel and distributed systems. In this context,
abstractions are programming language or hardware constructs
that hide system complexities from users. For exam- ple, caches
are abstractions that hide the latency and bandwidth gap be-
tween SRAM and DRAM from the programmer.

The most useful abstractions hide complexity without significantly
sacrificing performance.
This work evaluates the utility of abstractions in the CUDA pro-
gramming model for hiding GPU-CPU interconnect latency and
bandwidth. In Section II we cover typical GPU system configura-
tions. In Section III, we present an overview of the CUDA pro-
gramming model, and highlight the abstractions that hide GPU-
CPU communication. In Section IV, we describe the infrastructure
used to evaluate the latency sensitivity of
CUDA application. In Section V, we present results from several
CUDA benchmarks. Section VI briefly covers related work and
Section VIII concludes with the most significant implications of our
findings.

Citation: Pistulkar V.N. and Uttarwar C.A.(2012) Analyzing the CUDA Applications with its Latency and Bandwidth Tolerance. BIOINFO
Computer Engineering, ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, pp.-25-30.

Copyright: Copyright©2012 Pistulkar V.N. and Uttarwar C.A. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 26

CUDA Data Parallel Threading Model
Here, we'll describe the data parallelism model supported in
CUDA and the GPU. Why should PGI users want to understand
the CUDA threading model? Clearly, PGI CUDA Fortran users
should want to learn enough to tune their kernels. Programmers
using the directive-based PGI Accelerator programming model will
also find it instructive in order to understand and use the compiler
feedback (-Minfo messages) about which loops were run in paral-
lel or vector mode on the GPU; it's also important to know how to
tune performance using the loop mapping clauses. So let's start
with an overview of the hardware in today's NVIDIA Tesla and
Fermi GPUs. [17]

Fig. 1- NVIDIA Tesla Block Diagram

CUDA offers a data parallel programming model that is supported
on NVIDIA GPUs. In this model, the host program launches a
sequence of kernels. A kernel is organized as a hierarchy of
threads. Threads are grouped into blocks, and blocks are grouped
into a grid. Each thread has a unique local index in its block, and
each block has a unique index in the grid. Kernels can use these
indices to compute array subscripts, for instance. Performance
tuning on the GPU requires optimizing all these architectural fea-
tures:
Finding and exposing enough parallelism to populate all the multi-
processors.
Finding and exposing enough additional parallelism to allow multi-
threading to keep the cores busy.
Optimizing device memory accesses for contiguous data, essen-
tially optimizing for stride-1 memory accesses.
Utilizing the software data cache to store intermediate results or to
reorganize data that would otherwise require non-stride-1 device
memory accesses.

GPU System Architecture
Though GPUs have typically been used as accelerator cards con-
nected via a system interconnect like PCIe, there has been an
increasingly popular migration towards tightly-integrated heteroge-
neous CPU-GPU processors in the embedded domain and distrib-
uted multi-GPU systems in the high performance domain. Each of
these classes of systems is expected to run the same workloads.
However, the latency and bandwidth of the CPU-GPU communi-
cation link changes significantly for each of these systems. In this
paper we would like to explore the impact on currently existing
applications exposed by these new system configurations. We
begin by highlighting the differences among the three classes of
systems.

Discrete GPU - PCIe
GPUs have traditionally been used as add-in accelerators for of-
floading graphics applications on desktop systems. Systems in

this configuration are typically referred to as having a discrete
GPU. As add in cards, discrete GPUs have historically been treat-
ed as slave devices where the CPU issues a series of commands
and data transfers through the northbridge over an interconnect
such as PCI. These devices contain their own locally managed
DRAM that is not directly visible to the host CPU. As systems with
discrete GPUs evolved, new interfaces such as AGP and PCIe
increased the communication bandwidth between the CPU and
the GPU and DMA engines were added to free the CPU from di-
rect involvement in data transfers.
Discrete GPUs represent middle of the road interconnection laten-
cy and bandwidth. The theoretical upper-bound perfor- mance of
the commonly used 16x PCIe 2.0 interconnect is
16GB/s for bidirectional communication. Real world perfor- mance
is limited by driver and protocol overheads, and our own measure-
ments show that it is possible to attain 4.2GB/s for a unidirectional
DMA transfer. Other studies have shown that the best case PCIe
latency is on the order of 1us for small transfers [3]. Compared to
other machine configurations, discrete GPUs have lower band-
width and higher latency than tightly integrated GPU-CPU sys-
tems, but higher bandwidth and lower latency than GPU clusters.
As a final point, most CUDA applications were designed specifical-
ly for systems with discrete GPUs.

HPC - Bridged PCIe
NVIDIA has recently introduced a new class of GPUs system
where a set of several GPUs are packaged into a standalone 1U
blade. These GPUs are connected via bridged PCIe to a host
system, and the entire unit is meant to be used as a node in a
cluster or grid. In the best case, the bandwidth of these systems
will be reduced to half of that of an equivalent discrete GPU due to
the PCIe bridge servicing two GPUs on the same link. In the worst
case, kernels may be launched on a GPU that is not directly con-
nected to a node, forcing the kernel’s data and code to be trans-
ferred over the node- to-node interconnect. The most popular
cluster interconnects are currently Infiniband and Ethernet, with
bandwidths ranging from 250MB/s to 12GB/s and minimum laten-
cies ranging from
1us to 100us for a single hop. Though very high-end clusters can
attain interconnect performance similar to that of a discrete GPU
system, the average or worst cases increase latency by up to
100x, and reduce bandwidth by up to 32x.

Integrated GPU-CPU
Intel and AMD have driven research into heterogeneous integrat-
ed GPU-CPU processors where a number of GPU and CPU cores
are integrated on the same die, sharing a last level cache and
having direct access to the DRAM controllers. Pangea was a re-
search implementation of such a processor that was designed in
RTL and synthesized on an FPGA [4]. In their paper, Wong et al.
state that the communication latency from the CPU to the GPU
was only 12 cycles. Additionally, because the GPU and CPU
share the same memory space, DMA copies that would be sent
over PCIe in other systems can simply be copied in memory1 .
From our experiments, GPU memory typically has 10x greater
bandwidth than a large DMA operation over PCIe.
Taken together, these system configurations have latencies span-
ning four orders of magnitude and bandwidths varying by up to

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

Analyzing the cuda applications with its latency and bandwidth tolerance

Bioinfo Publications 27

320x. If CUDA applications are particularly latency or bandwidth
sensitive, then it is probably that many applications would have to
be significantly re-written to run on these different systems. It turns
out that this is not the case; most A copy is still necessary for
many applications due to the semantics of the CUDA program-
ming model.
applications experience no performance degradation nor any im-
provement when moving from one system to another. The next
section explores the characteristics of CUDA applications that
might make them tolerant to the wildly variant character- istics of
integrated, discrete, and clustered GPU systems.

The CUDA programming model
CUDA was introduced in 2006 as a programming language for
NVIDIA GPUs with minimal extensions to the C program- ming
language. What was not emphasized was that CUDA is based
around the idea of a Bulk-Synchronous Parallel (BSP) program,
an idea first introduced by Valiant [5] in 1990. As explained in the
subsequent section, BSP programs are implic- itly designed to be
latency tolerant in order to account for the rising cost of global
synchronization. Coupled together with the fact that applications
are composed of parallel streams of GPU kernels and CPU code
that are periodically synchronized, there is significant evidence to
suggest that CUDA applications can tolerate communication laten-
cy in the GPU-CPU link.

Bulk-Synchronous Parallel Programming
CUDA applications, and other BSP programs, are built around the
idea that the number of cores per processor will continue to in-
crease, as will the time needed to performance a global synchroni-
zation operation across all cores in the system. In order to ensure
that applications are scalable on future processors, BSP programs
(Kernels in CUDA) must be specified in terms of a large number of
work units (referred to as CTAs in CUDA) that cannot communi-
cate other than at periodic global barrier operations. In many cas-
es, the large number of CTAs per Kernel represent enough work
to hide the global synchronization overhead, which in CUDA rep-
resents a GPU-CPU communication operation.

CPU and GPU Streams
CUDA allows an application developer to partition a pro- gram into
highly parallel, completely encapsulated, GPU ker- nels interleav-
ed with C statements, where kernels are executed on the GPU
and the C statements are executed on the host CPU. The explicit-
ly partitioned design of CUDA programs allows them to be ex-
pressed conceptually as separate streams of operations, one
which executes on a GPU device and the other which executes on
a CPU core. This characteristic makes CUDA programs amenable
to execution on systems with high communication latency be-
tween the CPU and GPU, as kernel execution on the GPU can be
overlapped with C++ execution on the CPU.

Infrastructure
In order to evaluate the impact of interconnect latency and band-
width on the performance of CUDA applications, We leveraged
two existing simulation tools, Ocelot and NfinSim, coupled with
new interconnect models designed specifically for this evaluation
to simulate the execution of complete CUDA applications on sys-

tems with varying interconnect characteristics. For this evaluation,
we used the UIUC Parboil

 Fig. 1- High Level Overview of Ocelot

Fig. 2-An Example of A System Simulated in Parallel with NfinSim
benchmark suite, which is designed to be representative of com-

pute workloads for GPUs.

Ocelot - A CUDA Emulator
Ocelot is a just-in-time (JIT) compiler and runtime for CUDA appli-
cations capable of running applications on mul- tiple processors,
not only GPUs. Figure 1 shows the backend targets that are cur-
rently supported by Ocelot. CUDA appli- cations are composed of
two complementary components: 1) binaries for each kernel and
2) a runtime component that sets up the environment in which a
kernel is executed. The binaries for each kernel are stored in a
virtual instruction set (referred to as PTX) [6] which is normally
translated to the native instruction set of a particular GPU during
execution. Ocelot replaces the NVIDIA JIT compiler which only
supports NVIDIA GPUs with a custom compiler that includes back
-end targets for multi-core x86 (and other LLVM targets), NVIDIA
GPUs, and instruction by instruction emulation. Ocelot also replac-
es NVIDIA’s implementation of the CUDA runtime with a custom
implementation that makes CPU and Emulated devices appear to
be CUDA-capable GPUs.
In the context of this study, we use Ocelot to instrument CUDA
applications as they are running. We collect the fol- lowing infor-
mation as a CUDA program is being executed: 1) the sequence of
calls into the CUDA runtime, 2) the execution time of each call, 3)
the code size and execution time of each call, 4) the size of all
DMA operations, and 5) the time spent executing host code be-
tween successive CUDA calls. In order to account for the startup
latency associated with executing a kernel, we measured the exe-
cution time of a series of no-op kernels and subtracted this aver-
age startup cost on our test system from the execution time of
each kernel.
Assuming that the GPU used in each system configuration is the
same, then the execution time of the kernel should be the same
for each system. The only variance should be due to the latency of
sending commands and data to the GPU. We express every
CUDA runtime command as a packet that is processed by the
GPU along with the measured time required to execute the call.
To determine the total execution time of the application using
different interconnect configurations, we treat the series of CUDA
commands and host sections as independent streams of opera-

Pistulkar V.N. and Uttarwar C.A.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

Bioinfo Publications 28

tions that are synchronized on DMA copies to or from the GPU.
This is similar to the early Decoupled Access/Execute architec-
tures where opera- tions from independent streams could be over-
lapped [7], albeit our approach works at a higher level.

NFinSim - A Full System Simulator
NFinSim is a distributed discrete event simulator designed to pro-
vide cycle-level simulation of large-scale parallel sys- tems. It
uses a modular design where a large system can be composed of
a collection of smaller models that are explicitly connected and
communicate by exchanging events, an example of which is
shown in Figure 2. The natural division of a large system into
components eases the partitioning of the simulation into closely
connected clusters than can be simulated relatively independent-
ly, subject only to infrequently exchanges of events among clus-
ters. The goal is to design a simulator for parallel systems that can
take advantage of multi- core processors and clusters to maintain
a constant slowdown factor between native execution on a parallel
system and its simulation on the same system.
For this study, we modeled each GPU system using the following
components:
1. A CPU core,
2. a simple host network stack,
3. a point to point communication channel,
4. a GPU network stack, and
5. the GPU core.

CPU Core Model. For our CPU core model, we did not perform
detailed instruction level simulation. Instead, we used the record-
ed execution of each host code segment from the trace captured
by Ocelot combined with the clock frequency of the simulated
processor to generate a cycle count. The CPU model implement-
ed two different protocols for processing host code and CUDA
calls, blocking and non-blocking. In the blocking protocol, the CPU
would execute each host code section to completion before begin-
ning the next CUDA call. Furthermore, all CUDA calls were
acknowledged by the GPU such that only one call could be out-
standing at any time. For the non-blocking protocol, the CPU
would execute host code sections as they were encountered in
the program like the blocking protocol. However, most CUDA calls
would be launched asynchronously without waiting for
an acknowledgement before moving on to the next call or section
of host code. Synchronization would only take place at DMA
transfers which are required to complete before a new host sec-
tion can be executed in-case it uses the data copied from the
GPU or writes over the buffer being copied to the GPU.

Host Network Stack. The host network stack is responsible for
establishing a connection between the CPU and GPU models
when the program starts up. Once this has been accomplished, it
receives packets with encapsulated CUDA calls from the CPU,
marshals them into frames that can be transferred to the GPU and
routes them to the correct GPU in a system with multiple devices,
ensuring that calls are delivered to the GPU in the order in which
they were sent. The overhead associated with each stage of the
protocol is modeled using an analytical model that takes into ac-
count call packet size, marshaled data size, inter-packet delay,
routing time, and user- to-OS buffer copy time.

The GPU Model. The final GPU model is used to determine the
execution time of a particular CUDA call on the simu- lated GPU
device. We evaluated the possibility of performing detailed cycle-
level simulations for each CUDA kernel using either the Ocelot
emulator as a front-end to drive timing models or analytical mod-
els as in [8], or using another PTX simulator such as GPGPU-SIM
[9]. However, we eventually decided to use measured execution
times from real hardware based on the idea that changing the
communication latency between the GPU and CPU will change
the time at which a kernel begins execution rather than its total
execution time. In this case, our model is a very simple module
that accepts packets with recorded GPU execution time and con-
verts them into cycles based on the clock frequency of the simula-
tion.

Parboil - A CUDA Benchmark Suite
Parboil is a GPU benchmark suite written entirely in CUDA with
the intent to provide a means for characterizing the performance
of GPUs for compute intensive applications [2]. It includes two
magnetic resonance imaging applications, a coulombic grid poten-
tial application, a sum of absolute difference kernel taken from an
H.264 application, a two point angular correlation function kernel,
a petri net simulator, and a polynomial equation solver. For this
study, we assume that the Parboil benchmarks are representative
of CUDA applications. This may or may not be a reasonable as-
sumption.

Fig. 3- Impact of Bandwidth on Total Execution Time

Fig. 4- Impact of Latency on Total Execution Time

We recommend that any conclusions that are drawn from the
results of this study should not be applied directly to other applica-
tions without first verifying that the application is similar in struc-
ture to at least one of the Parboil benchmarks.

Results
In order to determine the latency tolerance of the Parboil bench-
marks, we collected traces of each application running using Oce-
lot on the system in Table I. We acknowledge that

Table 1-Tenst System

Analyzing the cuda applications with its latency and bandwidth tolerance

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

CPU Intel i920 Quad-Core 2.66Ghz

GPU NVIDIA Tesla C1060

Memory 8GB DDR-1333 DRAM

CPU Compiler GCC-4.4.1

CUDA Compiler NVCC-2.3

CUDA Runtime/JIT Ocelot 0.9.264

OS 64-bit Ubuntu 9.10

Bioinfo Publications 29

The GPU used in our experiments is a high end discrete GPU that
would probably not be packaged together with a CPU on the
same chip due to power constraints. However, the intent of these
experiments is to highlight the latency sensitivity of CUDA applica-
tions that may impact the design of applications for a specific
system configuration, rather than to model any given system. We
begin by exploring the sensitivity of CUDA applications to link
bandwidth before moving on to link latency.

Bandwidth
In this experiment, we started with the worst case bandwidth that
an application could ever experience in a realistic envi- ronment
and gradually scaled up the bandwidth until there was no further
improvement in performance for any of the benchmarks. For this
experiment, we assume that there is no communication startup
latency between the GPU and the CPU to isolate the effect of
bandwidth on the total execution time of the program. We began
by simulating a 10Mb/s link similar to an older Ethernet standard
or a high end Internet connection and move up to 10Gb/s (slightly
slower than PCIe2.0) as shown in Figure 3. The simulation was
run using both blocking and non-blocking communication.
As can be seen in the figure, most applications are not sensitive to
the interconnect bandwidth under any of the configurations tested.
Moving from blocking to non-blocking execution, does not signifi-
cantly impact the execution time of any application, leading us to
believe that overlapped GPU- CPU execution is not the source of
the latency tolerance of CUDA applications. Even the most sensi-
tive application, MRI- FHD, only experiences a 1.6x increase in
execution time using the simulated 10Mb/s link. This is significant-
ly slower than the GPU cluster configuration. In fact, these results
suggest that it would even be possible to run these applications
over an Internet class connection without significant performance
degradation. Needless to say, none of these application are band-
width sensitive.

Latency
For the second experiment, we started with the worst case latency
reported for any of our three system configurations,
100cycles, and swept the latency down to that of the fastest tightly
-integrated system, about 100k cycles. This simulation was run
using the blocking and non-blocking protocols like the previous
experiment, and like the previous experiment, the moving from
blocking to non-blocking execution does not significantly change
the results. Figure 4 only presents the results for the non-blocking
protocol to improve the readability of the figure.
Like the bandwidth experiment in the previous section, these ap-
plications experience almost no performance degradation with
increased interconnect latency. The slowest application is only 1.8
slower with an additional 100k cycles of latency for sending a new
packet over the link. It is also worthwhile to note that the PNS
application is the most latency sensitive application that we tested,
whereas MRI-FHD was the most bandwidth sensitive application.
Taken together, these results suggest that CUDA applications are
neither latency nor band- width sensitive.

Implications
These results have potentially significant implications on the de-
sign of GPU applications. One of the primary motivations of the

design of tightly-integrated GPU-CPU systems like Pangea is the
reduced communication latency from the CPU to the GPU where
the authors claim that ”This can achieve a two-order of magnitude
reduction in thread spawning latency” [4]. For at least the applica-
tions studied in this paper, this two-order of magnitude reduction
in latency may not matter. Pangea does not directly explore the
advantage of this reduc- tion in thread-spawn latency, instead
showing that a kernel’s execution time is very sensitive to DRAM
memory latency, which is an entirely different system parameter.
As a positive note, these results suggest that CUDA applications
may be good candidates for execution on distributed or cluster sys
- tems, or even future many-core architectures with significant
global synchronization latency.

Open problem and future work
Even though the results presented in this paper strongly suggest
that existing CUDA applications are not sensitive to the latency or
bandwidth of the GPU-CPU link, it may be that applications devel-
opers are forced to spend extra efforts to achieve this property
when designing CUDA applications. It is still the case that most
CUDA applications are developed and deployed on discrete GPU
systems due to their significant share of the total GPU market.
This may artificially force developers to account for constrained
latency and bandwidth resources in these systems such that the
only existing CUDA applications are latency tolerant by design
rather than by some inherent property in the programming model.

Fig. 5-CUDA RPC Libra

Conclusion
This paper explores the latency and bandwidth sensitivity of
CUDA applications leveraging the Ocelot CUDA emulator and the
NFinSim system simulator. For the applications evaluated in this
study, the most sensitive application only experiences a 1.6x
slowdown in response to a 1000x reduction in inter- connect
bandwidth and only a 1.8x slowdown in response to a 1000x in-
crease in interconnect latency. Though determining the exact
cause of this insensitivity is beyond the scope of this paper, these
results suggest that current GPU applications will see no benefit
from moving to tightly integrated GPU-CPU systems. Instead,
current applications designed for discrete GPUs have great poten-
tial to be deployed without modification on GPU clusters.

References
[1] Kerr A., Diamos G. and Yalamanchili S. (2009) IEEE Interna-

tional Symposium on Workload Characterization, 3-12.
[2] IMPACT (2007) The parboil benchmark suite.
[3] Holden B. (2006) Latency comparison between hyper-

transportT M and pci- expressT M in communications sys-
tems, in HyperTransportT M Con- sortium.

[4] Wong H., Bracy A., Schuchman E., Aamodt T.M., Collins J.D.

Pistulkar V.N. and Uttarwar C.A.

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

Bioinfo Publications 30

Wang P.H., Chinya G., A. K., Groen A.K., Jiang H. and Wang
H. (2008) 17th international conference on Parallel architec-
tures and compilation techniques, 52-61.

[5] Valiant L.G. (1990) Commun. ACM, 33(8), 103-111.
[6] NVIDIA Corporation (2008) NVIDIA Compute PTX- Parallel

Thread Execution, 1st ed.
[7] Smith J.E. (1982) 9th annual symposium on Computer Archi-

tecture ,112-119.
[8] Hong S.and Kim H. (2009) An analytical model for a gpu ar-

chitecture with memory-level and thread-level parallelism
awareness, 152-163.

[9] Bakhoda A., Yuan G.L., Fung W.W.L., Wong H. and Aamodt
T.M. (2009) IEEE International Symposium on Performance
Analysis of Systems and Software ,163-174.

[10] Gelado I., Kelm J.H., Ryoo S., Lumetta S.S., Navarro N. and
Hwu W. (2008) International Conference on Supercomputing
299-308.

[11] Shi L., Chen H. and Sun J. (2009) IEEE International Sympo-
sium on Parallel and Distributed Processing ,1-11.

[12] Gupta V., Gavrilovska A., Schwan K., Kharche H., Tolia N.,
Talwar V. and Ranganathan P. (2009) The 3rd ACM Work-
shop on System-level Virtualization for High Performance
Computing, 17-24.

[13] Stuart J.A. and Owens J.D. (2009) IEEE International Sympo-
sium on Parallel & Distributed Processing, 1-12.

[14] Diamos G. and Yalamanchili S. (2008) HPDC’08.
[15] 24th IEEE International Parallel & Distributed Processing

Symposium (2010).
[16] Sudnya Padalikar NFinTes Marietta, Georgia 30067 Gpu

System Architecture
[17] Michael Wolfe, PGI Compiler Engineer Understanding the

CUDA Data Parallel Threading Model.

Analyzing the cuda applications with its latency and bandwidth tolerance

BIOINFO Computer Engineering
ISSN: 2249-3980 & E-ISSN: 2249-3999, Volume 2, Issue 1, 2012

