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Abstract- Digital processing of audio on personal computers is becoming more and more common. Increasing hardware performance and
decreasing price broadens possibilities and quality. Even today’s standard PC’s are capable of processing CD-quality audio data in real
time, making it affordable even for amateurs and small studios to work in the digital domain. Real time audio processing allows modified
audio to be heard while it is processed. Although needing much CPU power, it significantly improves professional digital audio: only when
the effect of a changed parameter or setting (e.g. volume of an audio track) can be heard instantly, the desired parameter combination can
be found in an acceptable time scale[4]. Real time filters also improve non-destructive audio editing possibilities and can reduce the needed
disk space for filtered sections. This thesis will evaluate the wavelet theory for the use in real time digital audio processing[6]. Wavelets pro-
vide a new way of gathering frequency information from musical signals. Contrary to the traditionally employed technique for doing that
based on Fourier transforms - the STFT - time information is not lost in a portion of analyzed audio data. This property (along with others,
which are discussed later in this thesis) promises that wavelets provide efficient and suitable algorithms for real-time digital audio pro-
cessing.
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Introduction

The ever-increasing illegal manipulation of genuine audio prod-
ucts has been a dilemma for the music industry. This situation
calls for immediate, yet effective, solutions to avoid further finan-
cial losses and intellectual property violations. Audio watermark-
ing has been proposed as a possible solution, since this technolo-
gy embeds copyright information into audio files as a proof of their
ownership. In this paper, we propose an effective, robust, and an
inaudible audio watermarking algorithm. The effectiveness of the
algorithm has been brought by virtue of applying a cascade of two
powerful mathematical transforms; the discrete wavelets trans-
form (DWT) and the singular value decomposition (SVD)[5]. Ex-
perimental results will be presented in this paper to demonstrate
the effectiveness of the proposed algorithm. Recent unauthorized
copying and distribution of digital audio has been greatly facilitat-

ed by the availability of powerful personal computers, low-cost
and reliable storage devices, broadband communication net-
works, and many audio recording and editing software. This
alarming situation, has created a need for the protection and en-
forcement of intellectual property rights for digital media, to pre-
vent its illegal copying and reproduction. Such an urgent need is
particularly relevant to the music industry, which is seeking for
reliable solutions to problems associated with copyright protection
of music files. Data protection techniques, such as encryption, are
insufficient for protecting the music industry's intellectual proper-
ties. Digital watermarking technology, on the other hand, is now
attracting attention as a new method of protecting against unau-
thorized copying of digital multimedia files that includes image,
audio and video components.
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Choosing a Wavelet for processing Musical Signals

Audio signals come in many different flavors. Classical music has
different characteristics than speech, and both are again different
to pop music. This thesis focuses on musical audio signals, with-
out distinction of the characteristics. Speech signals could be re-
garded as a subset, so most assumptions for musical signals re-
main valid for speech signals. The idea is to develop algorithms
that work well for many kinds of audio signals in real time.

Requirements Quality

The quality of wavelet decomposition especially depends on the
ability of approximating the signal with wavelets. When the applied
wavelet does not resemble the shape of the analyzed signal, the
wavelet coefficients will not extract the main “features” of the sig-
nal- resulting in many non-zero wavelet coefficients to approxi-
mate the signal. Thus, the better the analysis, the fewer significant
wavelet coefficients result- they can be described as
“concentrated” coefficients Musical signals are always some kind
of smooth wave, significantly smoother than pictures Pictures may
have sharp edges, fine lines and high contrast. Short filters corre-
sponding to non-smooth wavelets like Daubechies 2 have proven
to approximate well pictures. Musical signals, however, lead to the
requirement of a sufficiently smooth wavelet, or in other words, a
high regularity is preferred. The size of the transition band of low
pass and high pass filters is an important factor, too. Larger transi-
tion bands (i.e. low steepness), cause high overlapping of low
pass and high pass bands. So the output bands of the filter bank
are not separated well, and aliasing effects are enforced when the
coefficients are change. Especially in applications where the
wavelet coefficients are related directly to frequency (i.e. in pitch
shifting), highly separated low pass and high pass frequency re-
sponse is important. Recursive wavelet filters have been designed
which greatly decrease the transition band, however they need a
special implementation and could not be researched further for
this thesis. Furthermore, linear phase response is crucial for high
quality audio filters. When the Furthermore, linear phase response
is crucial for high quality audio filters. When the filters do not have
at least an approximate linear phase, certain frequencies are de-
layed in the wavelet domain. The inverse transform undoes this
phase distortion. However, when the wavelet coefficients are
changed, unwanted modifications may occur to the frequencies,
which are “out of phase”. Linear phase response can be achieved
by using symmetric filters. Last, but not least, different wavelets
have different temporal localization. Wavelets with short compact
support can localize an event's time better than others. So, for
exact temporal analysis, a short wavelet is required, the faster
decay the better. This conflicts with the ability of separation of the
frequency bands and smoothness- there, longer filters provide
better results [6].

Real-time Aspects

Especially in a real time environment, wavelet transforms lead to
the requirement of a sufficiently fast algorithm so that the proces-
sor is able to compute the forward and inverse wavelet transform
faster than the resulting chunk is played. In the example of chunks
of 23ms duration, any processing of the chunk may not take more
than 23ms- otherwise the flow of chunks will have breaks. The
faster the processing has been completed, the better, as the re-

maining processor time can be used for additional processing on
the audio signal, operating system tasks, etc. Additionally, some
headroom is required, so that the real-time environment operates
stable at any time, also when high peaks of processor usage oc-
cur. This headroom needs to be especially large for operating
systems with preemptive multitasking, as the system may interrupt
the chunk processing at any time for other tasks. As the length of
the filters directly affects computation time of analysis and resyn-
thesis, shorter filters are preferred. However, in general, more
vanishing moments and smaller transition bands lead to longer
filters. As this is preferred for audio filters, a reasonable compro-
mise of filter length has to be found. Computers normally process
integer numbers faster than floating point numbers. It would be an
idea to use one of the integer-based wavelet transforms, e.g. fol-
lowing the procedure described. However, integer sample values
are not very well suited for high quality sound processing, resulting
in round off errors, unsmooth waves, causing alias effects. High-
quality audio processing systems can be assumed to work with
signals in a floating point format, so using an integer transform
would be of little benefit, while reducing overall quality. All modern
PCs are equipped with fast floating point processors, so the per-
formance impact is not very important. Also, the increasing popu-
larity of other programs using floating-point calculations extensive-
ly (i.e. 3D games) plays a role for processor manufacturers to
develop high performance floating point processing units.

Common Wavelets and their Properties

Some selected wavelets and their properties are presented in this
section. In general, constructing a wavelet is not a very difficult
task. However, highly sophisticated mathematics is involved when
wavelets with special “good” properties are wished. All wavelets
presented here were designed with such specialties, so their con-
struction has not been trivial at all (maybe except Haar).

Haar Wavelet

The Haar wavelet is a special one. It has only 2 filter coefficients,
S0 a long transition band is guaranteed. The wavelet function is a
square wave; smooth audio signals cannot be approximated well.
It is the only wavelet that is at once symmetric and orthogonal.
Regarding computation speed, it is perfect for real-time pro-
cessing. However, the quality is not sufficient; any modification of
wavelet coefficients results in strong aliasing.

Daubechies Wavelets

The compactly supported and orthogonal wavelets created by
Ingrid Daubechies in the late 1980’s gained much attention. They
were one of the first to make discrete wavelet analysis practicable.
She constructed them by designing orthogonal filters with maxi-
mum flatness of the frequency response at 0 and one half the
sampling rate (maxflat filters). So the restriction for design was the
highest number of vanishing moments for a given support width.
For a given number of vanishing moments p, the filters have 2p
coefficients. The minimum support constraint leads to maximum
temporal resolution. The resulting filters and wavelets are called
Daubechies p or just Dp. For the special case of p=1, the resulting
wavelet is Haar. Most Daubechies wavelets are not symmetric- in
contrary, some are very asymmetric. For small p>1, they are not
smooth but still continuous. With increasing p, the wavelet function
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becomes smoother. For example, the D2 wavelet has singularities
at the points p/2n (p and n integer) where it is left-differentiable but
not right-differentiable. Due to the flatness, the filters do not sepa-
rate the frequency bands very well. The steepness of the filter's
frequency response is proportional to the square root of 2p.

Fig. 1-

Daubechies wavelet family Most Daubechies wavelets are not
symmetric- in contrary, some are very asymmetric. For small p>1,
they are not smooth but still continuous. With increasing p, the
wavelet function becomes smoother. For example, the D2 wavelet
has singularities at the points p/2n (p and n integer) where it is left
-differentiable but not right-differentiable. Due to the flatness, the
filters do not separate the frequency bands very well. The steep-
ness of the filter's frequency response is proportional to the
square root of 2p. Fig. shows a) D3 wavelet, b) D6 wavelet, c)
D20 wavelet. In d), the respective filter responses are plotted. It
can easily be seen that the higher the order p, the steeper the
transition curve.

Other Orthogonal Wavelets

Daubechies constructed a series of other orthogonal wavelets:
“symmlets” have similar good features like the Daubechies family
(compact support, p vanishing moments) but they were designed
with the requirement to optimize symmetry and linear phase. Still,
as it is impossible for orthogonal wavelets, they are not perfectly
symmetric. Another family of wavelets (also constructed by I.
Daubechies) are the so-called Coiflets. She constructed them on
request of R. Coifman36, who needed wavelets similar to the
Daubechies family, but with an additional constraint on the scaling
function: not only the wavelet function, but also the scaling func-
tion has to have p vanishing moments. This has the advantage
that the approximation coefficients can be approximated by the
signal samples themselves. However, the support, and therefore
the length of the filters, is longer (length of filter 6p instead of
2p37), so this additional property costs efficiency.

A special wavelet family is the one of Meyer wavelets A special
wavelet family is the one of Meyer wavelets. The wavelet and
scaling function are constructed in the frequency domain with an
auxiliary function. Their support is infinite, but still the functions
have a fast decay. They are infinitely differentiable; furthermore
they are symmetric and orthogonal, but have no vanishing mo-
ments. FIR Filters cannot be constructed, so a filter bank imple-
mentation is not possible.

Crude Wavelets
In [6], wavelets which lack many interesting properties are called

“crude”: the Morlet wavelet and the mexican hat38 both have an
explicit expression for y, but a scaling function cannot be con-
structed. They have neither compact support, nor vanishing mo-
ments, and are not orthogonal. Due to these limitations, filters
cannot be calculated, and only the forward CWT is possible. They
are useful for mathematical demonstrations, as the wavelet func-
tion exists as a formula.

Biorthogonal Wavelets

There exist a number of well-studied biorthogonal wavelets. The
major advantage of biorthogonal wavelets is the possibility to cre-
ate symmetric transforms: both wavelet and scaling function are
symmetric. This requires an odd length of both analysis filters
Biorthogonal wavelet functions and scaling functions are different
foranalysis and resynthesis, so for a filter bank transform, 2 analy-
sis filters and 2 different resynthesis filters need to be used. Com-
mon practice for biorthogonal transforms is to indicate the analysis
wavelet and scaling function with y~ and f ~, respectively. It is
apparent that the filters may have different properties for analysis
and resynthesis. Consequently, useful properties for analysis are
designed into the analysis filters (e.g. vanishing moments) while
the resynthesis filters may be designed in respect to useful prop-
erties for reconstruction (e.g. regularity). Battle and Lemarié intro-
duced biorthogonal wavelets based on polynomial splines. For
splines of degree m, the resulting wavelet function has m+1 van-
ishing moments. Unlike Daubechies wavelets, they are not com-
pactly supported; finite filters can only be approximated by cutting
of at the edges. However, the wavelet function has exponential
decay, so reasonably truncating the filters does not introduce
much error. Polynomial spline wavelet functions can be specified
explicitly in the frequency domain, and since they are polynomial
splines, they are m-1 times continuously differentiable, resulting in
quite smooth wavelets. For odd m, these wavelets are symmetric.
An orthogonalization scheme allows making the Battle- Lemarié
family of filters orthogonal. In short, spline wavelets provide maxi-
mum regularity with symmetry and minimum support. Other
biorthogonal wavelets are Binlets, also based on splines,. They
are symmetric, have short support and the coefficients are binary:
all coefficients of a filter are integers divided by the same power of
2. This allows efficient implementation on computers- division by a
power of 2 is “natural” for computers.

Decision

The parameterization possibilities of the wavelet transform provide
a high degree of flexibility on its properties and performance. By
fixing the wavelet and its parameters for the transform used in the
example applications, the flexibility of the wavelet transform would
be lost. It would degrade its potential; therefore no definitive
choice shall be made. For example, when high separation of the
frequency bands is needed, long filters with high demands on
processing power are needed. By providing the length of the filters
as a parameter to the user, the quality can be adjusted with re-
spect to the performance of the computer. However, some deci-
sions can be taken- mostly by exclusion. The demand for linear
phase leads to symmetric biorthogonal wavelets. A high degree of
regularity and frequency band separation is preferred. On the
other hand, temporal resolution is not a major concern- steep
filters are more important. Biorthogonal spline wavelets provide all
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these properties. Studies of wavelet transforms for audio or audio
like signals agree on this. Consequently, symmetric spline-based
wavelets or Battle-Lemarié wavelets will be used for the example
applications. Other wavelets are included for comparison purpos-
es.

Conclusion

The paper contains a description of the algorithm which allows us
to perform the wavelet transform in real time. The algorithm works
on the basis of calculating the optimal extension (overlap)of signal
segments, and subsequent performance of the modified trans-
form.

In the future it would be convenient to improve the computational
effectivity by reducing redundant computations at the borders of
the segments, as it follows from the Algorithm 3.5. Also,it should
not be very difficult to generalize the SegWT method to include
biorthogonal wavelets and more general types of decimation be-
cause the parameters of SegWT can be chosen in a fairly general
way. Another important part of the future work is the derivation
ofan efficient counterpart to the introduced method- the segment-
ed inverse transform. In fact, we made first experience, in which it
turned out, above all, that the time lag in the consecutive forward
inverse processing will be, unfortunately, always nonzero.

Acknowledgement

| express my sincere gratitude to Resp. Dr. A.D. Gawande Head
of the Department, Computer Science & Engineering & Resp. Dr.
S.A. Ladhake for providing their valuable guidance and necessary
facilities needed for the successful completion of this seminar
throughout. 1 am also obliged to our principal, Resp. Dr. S.A.
Ladhake who has been a constant source of inspiration through-
out.

Lastly, but not least, | thank all my friends and well-wishers who
were a constant source of inspiration.

References

[1] Darlington D., Daudet L. and Sandler M. (2002) The 5th Int.
Conf. on Digital Audio Effects (DAFX).

[2] Strang G. and Nguyen T. (1996) Wavelets and Filter Banks.

[3] Rajmic P. (2004) PhD Thesis, Brno University of Technology.

[4] Dutilleux P. (1989) Time-Frequency Methods and Phase
Space, Inverse Problems and Theoretical Imaging, 298-304.

[5] Nason G.P. and Silverman B.W. (1995) Wavelets and Statis-
tics, 103 of Lecture Notes in Statistics, 281-300.

[6] Matteo F. and Johnson Steven G. (2000) http://www.fftw.org/.

[7] Tony F. http://wwwusers.cs.york.ac.uk.

[8] Ghael S., Sayeed A. and Baraniuk R. http./www.dsp.rice.edu.

Bioinfo Publications

Journal of Pattern Intelligence
ISSN: 2230-9330 & E-ISSN: 2230-9349, Volume 2, Issue 1, 2012

18



