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Abstract- Digital processing of audio on personal computers is becoming more and more common. Increasing hardware performance and 
decreasing price broadens possibilities and quality. Even today’s standard PC’s are capable of processing CD-quality audio data in real 
time, making it affordable even for amateurs and small studios to work in the digital domain. Real time audio processing allows modified 
audio to be heard while it is processed. Although needing much CPU power, it significantly improves professional digital audio: only when 
the effect of a changed parameter or setting (e.g. volume of an audio track) can be heard instantly, the desired parameter combination can 
be found in an acceptable time scale[4]. Real time filters also improve non-destructive audio editing possibilities and can reduce the needed 
disk space for filtered sections. This thesis will evaluate the wavelet theory for the use in real time digital audio processing[6]. Wavelets pro-
vide a new way of gathering frequency information from musical signals. Contrary to the traditionally employed technique for doing that 
based on Fourier transforms - the STFT - time information is not lost in a portion of analyzed audio data. This property (along with others, 
which are discussed later in this thesis) promises that wavelets provide efficient and suitable algorithms for real-time digital audio pro-
cessing.  
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Introduction 
The ever-increasing illegal manipulation of genuine audio prod-
ucts has been a dilemma for the music industry. This situation 
calls for immediate, yet effective, solutions to avoid further finan-
cial losses and intellectual property violations. Audio watermark-
ing has been proposed as a possible solution, since this technolo-
gy embeds copyright information into audio files as a proof of their 
ownership. In this paper, we propose an effective, robust, and an 
inaudible audio watermarking algorithm. The effectiveness of the 
algorithm has been brought by virtue of applying a cascade of two 
powerful mathematical transforms; the discrete wavelets trans-
form (DWT) and the singular value decomposition (SVD)[5]. Ex-
perimental results will be presented in this paper to demonstrate 
the effectiveness of the proposed algorithm. Recent unauthorized 
copying and distribution of digital audio has been greatly facilitat-

ed by the availability of powerful personal computers, low-cost 
and reliable storage devices, broadband communication net-
works, and many audio recording and editing software. This 
alarming situation, has created a need for the protection and en-
forcement of intellectual property rights for digital media, to pre-
vent its illegal copying and reproduction. Such an urgent need is 
particularly relevant to the music industry, which is seeking for 
reliable solutions to problems associated with copyright protection 
of music files. Data protection techniques, such as encryption, are 
insufficient for protecting the music industry's intellectual proper-
ties. Digital watermarking technology, on the other hand, is now 
attracting attention as a new method of protecting against unau-
thorized copying of digital multimedia files that includes image, 
audio and video components. 
 

Citation: Kale R.H. and Mohod N.P. (2012) Wavelet in Audio Processing for Real-Time System. Journal of Pattern Intelligence, ISSN: 2230-
9330 & E-ISSN: 2230-9349, Volume 2, Issue 1, pp.-15-18. 
 
Copyright: Copyright©2012 Kale R.H. and Mohod N.P. This is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source 
are credited.  



Bioinfo Publications   16 

 

Choosing a Wavelet for processing Musical Signals 
Audio signals come in many different flavors. Classical music has 
different characteristics than speech, and both are again different 
to pop music. This thesis focuses on musical audio signals, with-
out distinction of the characteristics. Speech signals could be re-
garded as a subset, so most assumptions for musical signals re-
main valid for speech signals. The idea is to develop algorithms 
that work well for many kinds of audio signals in real time. 
 
Requirements Quality 
The quality of wavelet decomposition especially depends on the 
ability of approximating the signal with wavelets. When the applied 
wavelet does not resemble the shape of the analyzed signal, the 
wavelet coefficients will not extract the main “features” of the sig-
nal- resulting in many non-zero wavelet coefficients to approxi-
mate the signal. Thus, the better the analysis, the fewer significant 
wavelet coefficients result- they can be described as 
“concentrated” coefficients Musical signals are always some kind 
of smooth wave, significantly smoother than pictures Pictures may 
have sharp edges, fine lines and high contrast. Short filters corre-
sponding to non-smooth wavelets like Daubechies 2 have proven 
to approximate well pictures. Musical signals, however, lead to the 
requirement of a sufficiently smooth wavelet, or in other words, a 
high regularity is preferred. The size of the transition band of low 
pass and high pass filters is an important factor, too. Larger transi-
tion bands (i.e. low steepness), cause high overlapping of low 
pass and high pass bands. So the output bands of the filter bank 
are not separated well, and aliasing effects are enforced when the 
coefficients are change. Especially in applications where the 
wavelet coefficients are related directly to frequency (i.e. in pitch 
shifting), highly separated low pass and high pass frequency re-
sponse is important. Recursive wavelet filters have been designed 
which greatly decrease the transition band, however they need a 
special implementation and could not be researched further for 
this thesis. Furthermore, linear phase response is crucial for high 
quality audio filters. When the Furthermore, linear phase response 
is crucial for high quality audio filters. When the filters do not have 
at least an approximate linear phase, certain frequencies are de-
layed in the wavelet domain. The inverse transform undoes this 
phase distortion. However, when the wavelet coefficients are 
changed, unwanted modifications may occur to the frequencies, 
which are “out of phase”. Linear phase response can be achieved 
by using symmetric filters. Last, but not least, different wavelets 
have different temporal localization. Wavelets with short compact 
support can localize an event’s time better than others. So, for 
exact temporal analysis, a short wavelet is required, the faster 
decay the better. This conflicts with the ability of separation of the 
frequency bands and smoothness- there, longer filters provide 
better results [6]. 
 
Real-time Aspects 
Especially in a real time environment, wavelet transforms lead to 
the requirement of a sufficiently fast algorithm so that the proces-
sor is able to compute the forward and inverse wavelet transform 
faster than the resulting chunk is played. In the example of chunks 
of 23ms duration, any processing of the chunk may not take more 
than 23ms- otherwise the flow of chunks will have breaks. The 
faster the processing has been completed, the better, as the re-

maining processor time can be used for additional processing on 
the audio signal, operating system tasks, etc. Additionally, some 
headroom is required, so that the real-time environment operates 
stable at any time, also when high peaks of processor usage oc-
cur. This headroom needs to be especially large for operating 
systems with preemptive multitasking, as the system may interrupt 
the chunk processing at any time for other tasks. As the length of 
the filters directly affects computation time of analysis and resyn-
thesis, shorter filters are preferred. However, in general, more 
vanishing moments and smaller transition bands lead to longer 
filters. As this is preferred for audio filters, a reasonable compro-
mise of filter length has to be found. Computers normally process 
integer numbers faster than floating point numbers. It would be an 
idea to use one of the integer-based wavelet transforms, e.g. fol-
lowing the procedure described. However, integer sample values 
are not very well suited for high quality sound processing, resulting 
in round off errors, unsmooth waves, causing alias effects. High-
quality audio processing systems can be assumed to work with 
signals in a floating point format, so using an integer transform 
would be of little benefit, while reducing overall quality. All modern 
PCs are equipped with fast floating point processors, so the per-
formance impact is not very important. Also, the increasing popu-
larity of other programs using floating-point calculations extensive-
ly (i.e. 3D games) plays a role for processor manufacturers to 
develop high performance floating point processing units. 
 
Common Wavelets and their Properties 
Some selected wavelets and their properties are presented in this 
section. In general, constructing a wavelet is not a very difficult 
task. However, highly sophisticated mathematics is involved when 
wavelets with special “good” properties are wished. All wavelets 
presented here were designed with such specialties, so their con-
struction has not been trivial at all (maybe except Haar). 
 
Haar Wavelet 
The Haar wavelet is a special one. It has only 2 filter coefficients, 
so a long transition band is guaranteed. The wavelet function is a 
square wave; smooth audio signals cannot be approximated well. 
It is the only wavelet that is at once symmetric and orthogonal. 
Regarding computation speed, it is perfect for real-time pro-
cessing. However, the quality is not sufficient: any modification of 
wavelet coefficients results in strong aliasing. 
 
Daubechies Wavelets 
The compactly supported and orthogonal wavelets created by 
Ingrid Daubechies in the late 1980’s gained much attention. They 
were one of the first to make discrete wavelet analysis practicable. 
She constructed them by designing orthogonal filters with maxi-
mum flatness of the frequency response at 0 and one half the 
sampling rate (maxflat filters). So the restriction for design was the 
highest number of vanishing moments for a given support width. 
For a given number of vanishing moments p, the filters have 2p 
coefficients. The minimum support constraint leads to maximum 
temporal resolution. The resulting filters and wavelets are called 
Daubechies p or just Dp. For the special case of p=1, the resulting 
wavelet is Haar. Most Daubechies wavelets are not symmetric- in 
contrary, some are very asymmetric. For small p>1, they are not 
smooth but still continuous. With increasing p, the wavelet function 
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becomes smoother. For example, the D2 wavelet has singularities 
at the points p/2n (p and n integer) where it is left-differentiable but 
not right-differentiable. Due to the flatness, the filters do not sepa-
rate the frequency bands very well. The steepness of the filter’s 
frequency response is proportional to the square root of 2p. 

Fig. 1- 
 
Daubechies wavelet family Most Daubechies wavelets are not 
symmetric- in contrary, some are very asymmetric. For small p>1, 
they are not smooth but still continuous. With increasing p, the 
wavelet function becomes smoother. For example, the D2 wavelet 
has singularities at the points p/2n (p and n integer) where it is left
-differentiable but not right-differentiable. Due to the flatness, the 
filters do not separate the frequency bands very well. The steep-
ness of the filter’s frequency response is proportional to the 
square root of 2p. Fig. shows a) D3 wavelet, b) D6 wavelet, c) 
D20 wavelet. In d), the respective filter responses are plotted. It 
can easily be seen that the higher the order p, the steeper the 
transition curve. 
 
Other Orthogonal Wavelets 
Daubechies constructed a series of other orthogonal wavelets: 
“symmlets” have similar good features like the Daubechies family 
(compact support, p vanishing moments) but they were designed 
with the requirement to optimize symmetry and linear phase. Still, 
as it is impossible for orthogonal wavelets, they are not perfectly 
symmetric. Another family of wavelets (also constructed by I. 
Daubechies) are the so-called Coiflets. She constructed them on 
request of R. Coifman36, who needed wavelets similar to the 
Daubechies family, but with an additional constraint on the scaling 
function: not only the wavelet function, but also the scaling func-
tion has to have p vanishing moments. This has the advantage 
that the approximation coefficients can be approximated by the 
signal samples themselves. However, the support, and therefore 
the length of the filters, is longer (length of filter 6p instead of 
2p37), so this additional property costs efficiency. 
A special wavelet family is the one of Meyer wavelets A special 
wavelet family is the one of Meyer wavelets. The wavelet and 
scaling function are constructed in the frequency domain with an 
auxiliary function. Their support is infinite, but still the functions 
have a fast decay. They are infinitely differentiable; furthermore 
they are symmetric and orthogonal, but have no vanishing mo-
ments. FIR Filters cannot be constructed, so a filter bank imple-
mentation is not possible. 
 
Crude Wavelets 
In [6], wavelets which lack many interesting properties are called 

“crude”: the Morlet wavelet and the mexican hat38 both have an 
explicit expression for y, but a scaling function cannot be con-
structed. They have neither compact support, nor vanishing mo-
ments, and are not orthogonal. Due to these limitations, filters 
cannot be calculated, and only the forward CWT is possible. They 
are useful for mathematical demonstrations, as the wavelet func-
tion exists as a formula. 
 
Biorthogonal Wavelets 
There exist a number of well-studied biorthogonal wavelets. The 
major advantage of biorthogonal wavelets is the possibility to cre-
ate symmetric transforms: both wavelet and scaling function are 
symmetric. This requires an odd length of both analysis filters 
Biorthogonal wavelet functions and scaling functions are different 
foranalysis and resynthesis, so for a filter bank transform, 2 analy-
sis filters and 2 different resynthesis filters need to be used. Com-
mon practice for biorthogonal transforms is to indicate the analysis 
wavelet and scaling function with y~ and f ~, respectively. It is 
apparent that the filters may have different properties for analysis 
and resynthesis. Consequently, useful properties for analysis are 
designed into the analysis filters (e.g. vanishing moments) while 
the resynthesis filters may be designed in respect to useful prop-
erties for reconstruction (e.g. regularity). Battle and Lemarié intro-
duced biorthogonal wavelets based on polynomial splines. For 
splines of degree m, the resulting wavelet function has m+1 van-
ishing moments. Unlike Daubechies wavelets, they are not com-
pactly supported; finite filters can only be approximated by cutting 
of at the edges. However, the wavelet function has exponential 
decay, so reasonably truncating the filters does not introduce 
much error. Polynomial spline wavelet functions can be specified 
explicitly in the frequency domain, and since they are polynomial 
splines, they are m-1 times continuously differentiable, resulting in 
quite smooth wavelets. For odd m, these wavelets are symmetric. 
An orthogonalization scheme allows making the Battle- Lemarié 
family of filters orthogonal. In short, spline wavelets provide maxi-
mum regularity with symmetry and minimum support. Other 
biorthogonal wavelets are Binlets, also based on splines,. They 
are symmetric, have short support and the coefficients are binary: 
all coefficients of a filter are integers divided by the same power of 
2. This allows efficient implementation on computers- division by a 
power of 2 is “natural” for computers. 
 
Decision 
The parameterization possibilities of the wavelet transform provide 
a high degree of flexibility on its properties and performance. By 
fixing the wavelet and its parameters for the transform used in the 
example applications, the flexibility of the wavelet transform would 
be lost. It would degrade its potential; therefore no definitive 
choice shall be made. For example, when high separation of the 
frequency bands is needed, long filters with high demands on 
processing power are needed. By providing the length of the filters 
as a parameter to the user, the quality can be adjusted with re-
spect to the performance of the computer. However, some deci-
sions can be taken- mostly by exclusion. The demand for linear 
phase leads to symmetric biorthogonal wavelets. A high degree of 
regularity and frequency band separation is preferred. On the 
other hand, temporal resolution is not a major concern- steep 
filters are more important. Biorthogonal spline wavelets provide all 
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these properties. Studies of wavelet transforms for audio or audio 
like signals agree on this. Consequently, symmetric spline-based 
wavelets or Battle-Lemarié wavelets will be used for the example 
applications. Other wavelets are included for comparison purpos-
es. 
 
Conclusion 
The paper contains a description of the algorithm which allows us 
to perform the wavelet transform in real time. The algorithm works 
on the basis of calculating the optimal extension (overlap)of signal 
segments, and subsequent performance of the modified trans-
form. 
In the future it would be convenient to improve the computational 
effectivity by reducing redundant computations at the borders of 
the segments, as it follows from the Algorithm 3.5. Also,it should 
not be very difficult to generalize the SegWT method to include 
biorthogonal wavelets and more general types of decimation be-
cause the parameters of SegWT can be chosen in a fairly general 
way. Another important part of the future work is the derivation 
ofan efficient counterpart to the introduced method- the segment-
ed inverse transform. In fact, we made first experience, in which it 
turned out, above all, that the time lag in the consecutive forward 
inverse processing will be, unfortunately, always nonzero. 
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