
24
Copyright © 2011, Bioinfo Publications

Journal of Electronic and Electrical Engineering
ISSN: 0976–8106 & E-ISSN: 0976–8114, Vol. 2, Issue 1, 2011, pp-24-29
Available online at http://www.bioinfo.in/contents.php?id=82

OPTIMIZATION OF BINARY AND MULTI-VALUED DIGITAL CIRCUITS USING MVSIS
AND AIG REWRITING (ABC)

HEMANT DHABHAI1, ABHISHEK KATARIYA2, GEETAM TOMAR3, YOGESH KRISHAN4

Department of Electronics & Comm., Sri Balaji College Of Engg. & Tech., Jaipur (Raj.), India, hemant1_anu@rediff.com
Department of Electronics & Comm., Sri Balaji College of Engg. & Tech., Jaipur (Raj.), India, abhishek_katariya@rediffmail.com
Director, MIR Lab, Gwalior (M.P.), India, gstomar@ieee.org
Department of Electronics & Comm., Sri Balaji College of Engg. & Tech., Jaipur (Raj.), India, yogi_sikar@yahoo.com
*Corresponding Author: Email- abhishek_katariya@rediffmail.com

Received: August 24, 2011; Accepted: September 08, 2011

Abstract– Benchmark designs are the basis for the performance evaluation of today’s EDA tools for assisting the synthesis
of an integrated circuit. The most commonly employed method to verify the competitiveness of a new tool consists of
applying this tool to a set of benchmark designs in a given experimental setting. The experimental results are then compared
to those obtained by applying a comparable state-of-the-art tool to the same set of designs. Berkeley Logic Interchange
Format (BLIF) is used to represent combinational and sequential logic networks used in academic logic synthesis and
verification tools.
This paper is concerned with focusing the comparison of AIG rewriting in ABC with logic synthesis in MVSIS on MCNC
benchmark. We have also performed Node reduction with MVSIS (script.rugged) and ABC (resyn2), and also shows area
and delay reduction by mapping of optimize benchmark. We have found out that AIG rewriting is an innovative technique for
combinational logic synthesis.
Key words – MVSIS, MCNC benchmark, AIG, ASIC, BLIF, EDA tools

INTRODUCTION
Logic synthesis addresses the problem of translating a
register-transfer level description of a design into an
optimal logic–level representation. Very large scale
Integration technology is in wide use in modern digital
systems. VLSI technology currently allows hundreds of
thousands of transistors in a single application-specific
integrated circuit (ASIC), and the level of integration is
increasing at a rapid rate [1].
Many tools are used to measure the quality and
correctness of these circuits before fabrication for
assisting the synthesis of an integrated circuit. They
include reduced design time, reduced probability of design
error and also reduce the area, delay and power of a
particular circuit. MVSIS is a logic synthesis system, which
supports the data structures and procedures needed for
technology
independent binary and multi-valued (MV) logic synthesis
[2, 3]. Similarly, AIGs can be used to represent arbitrary
Boolean formulas and circuits, and are implemented in
several logic synthesis and verification systems. It is
possible to represent every basic logic operation by AND
gates and inverters and therefore by AIGs.
Improving verification productivity and avoiding respins
have lead to a structured, design-for-verification
methodology. In the past decades, many functional
verification tools and methodologies have been
developed, including simulators, formal verifiers, and
debugging tools. Among these verification methods, SIS,

MVSIS and ABC has become the mainstream
methodology for functional verification to generate as
large a representative set of scenarios for a given digital
circuits as possible under project constraints.

MVSIS
Logic synthesis exemplified SIS and MVSIS by applying a
sequence of optimization steps i.e. SWEEP (For removing
nodes), ELIMINATE and RESUBSTITUTE (For finding
better boundary), FAST_EXTRACT (For discovering
better logic boundary) and SIMPLIFY and
FULL_SIMPLIFY (For simplifying the node
representation)[12]. MVSIS is a program modeled after
SIS, but the logic network it works on is such that all
variables can be multi-valued, each with its own range.
MVSIS can read and write BLIF.

MVSIS input formats can be-
1. PLA or BLIF for Binary functions and networks
2. BLIF-MV for Multi-valued functions and networks
3. And for, FSMs and finite automata three options are

available
 Using BLIF/BLIF-MV followed by “stg_extract”
 Using modified KISS2 format
 Using modified BLIF-MV format

To optimize any type of digital circuit, we can perform
following steps:-

1. Node simplification

Hemant Dhabhai, Abhishek Katariya, Geetam Tomar, Yogesh Krishan

25
Journal of Electronic and Electrical Engineering

ISSN: 0976–8106 & E-ISSN: 0976–8114, Vol. 2, Issue 1, 2011

2. Algebraic Decomposition
3. Pairing and encoding
4. Network manipulation

BERKELEY LOGIC INTERCHANGE FORMAT i.e. BLIF
A Binary Valued/ Multi Valued (BV/MV) circuit can be
input to MVSIS as a net list of BV-node (command:
read_blif or read_blif_mv) MV-nodes (command:
read_blif_mv). This BLIF format can be generating by
using VIS/VL2MV, by the Verilog front-end to VIS (vl2mv)
or can be written out by VIS.
The Berkeley Logic Interchange Format (BLIF) is used to
represent combinational and sequential logic networks
used in academic logic synthesis and verification tools.
BLIF became popular with SIS and is currently supported
in VIS, MVSIS, and most recently in ABC . BLIF is also
supported by the academic physical design tool VPR [9].
 BLIF-Format

.model <you name it>
.inputs <list of input names>
.outputs <list of output names>
.names <list of fan-in names> <node_name>
<PLA representation of the node’s function>
.names <list of fanin names> <node_name>
<PLA representation of the node’s function>

…
.latch <latch_input> <latch_output> <reset_value>
.latch <latch_input> <latch_output> <reset_value>
…
.end

Fig. 1-BLIF Format

ABC (AIG REWRITING)
An And-Inverter Graph (AIG) is, a directed acyclic graph
(DAG), or a network which have two type of node i.e. AND
and INVERTER. AIG is not canonical. A node with no
incoming edges is a primary input (PI). A node with two
incoming edges is a two-input AND gate. An edge is either
complement or not. A complement edge indicates the
inversion of the signal[6,9]. Certain nodes are marked as
primary outputs (POs). Register if present are considered
as PI/PO pairs. Two Boolean functions, F and G, belong
to the same NPN-class (Or equivalent NPN) if F can be
derived from G by negating (N) and permuting (P) inputs
and negating (N) the output.
Example: Functions F = ab + c and G = ac + b are NPN-
equivalent because swapping b and c make them
identical. Function F = ab + c and G = ab are not NPN-
equivalent because no amount of permuting and
complementing variables can make a 3-variable function
equivalent to a 2-variable function.

TYPES OF AIGS
COMBINATIONAL AIGS
A combinational And-Invertor Graph (AIG) is a Boolean
network composed of two-input ANDs and inverters. To
derive an AIG, the SOPs of the nodes in a logic network
are factored, the AND and OR gates of the factored forms
are converted into two-input ANDs and inverters using

DeMorgan’s rule, and these nodes are added to the AIG
manager in a topological order.
The size (area) of an AIG is the number of its nodes; the
depth (delay) is the number of nodes on the longest path
from the PIs to the POs. The goal of optimization by local
transformations of an AIG is to reduce both area and
delay.

SEQUENTIAL AIGS
Sequential AIGs extend combinational AIGs with
technology-independent D-flip-flops with one input and
one output, controlled by the same clock, omitted in the
AIG representations [6].
We represent flip-flops in the AIG explicitly as additional
PI/POs pairs. The PIs and register outputs are called
combinational inputs (CIs) and the POs and register
inputs are called combinational outputs (COs). The
additional pairs of CI/CO nodes follow the regular
PIs/POs, and are in one to one correspondence with each
other [10].
The AIG is a Boolean network composed of two types of
nodes: two-input AND-gates and inverters.

Fig. 2-Two different AIGs for a Boolean function [14]

A representation of a Boolean function is canonical if, for
any function, there exists only one representation of this
type. AIGs are not canonical, that is, the same function
can be represented by two functionally equivalent AIGs,
which have different structure. An example of such
function is shown in Fig. (2) [14]

OUR APPROACH
To address the problems mentioned above, we have
tested several benchmark circuits like Duke2, Rd84,
Misex2, B12, Cordic, Cps, Pdc, Spla, C432, B9, Dalu, K2
etc. on MVSIS and ABC rewriting for optimization of MV
networks.

OPTIMIZATION OF BENCHMARK BY MVSIS
To analyze the performance of this tool, script.rugged is
applied over 19 combinational MCNC benchmark
circuit.structure of
script.rugged is shown in figure 1.
fullsimp -m nocomp
sweep;
eliminate -1
simplify -m nocomp
eliminate -1
sweep;
eliminate 5

Optimization of binary and multi-valued digital circuits using mvsis and aig rewriting (abc)

26
Copyright © 2011, Bioinfo Publications

simplify -m nocomp
resub
resub ;
sweep
eliminate ;
sweep
fullsimp -m nocomp

Fig. 3- script.rugged

In the Table 1, the first column shows the standard MCNC
benchmark circuit. Next seven columns show the statics
of the benchmark circuit before applying the standard
script.rugged. Here, PI is the number of primary inputs;
PO is the number of primary output, while Lits indicate the
literals. The next section of the table shows, the reduced
number of node, level, cubes, literals and literal(ff) after
run MVSIS (script.rugged) over the benchmark.

Example: Script.rugged for Duke2 benchmark circuit
read_blif duke2.blif
print_stats -s
read_library mcnc.genlib
map
print_map_stats
fullsimp -m nocomp
map
sweep;
eliminate
simplify -m nocomp
eliminate
sweep;
eliminate
simplify -m nocomp
resub
resub ;
sweep
eliminate ;
sweep
fullsimp -m nocomp
map
print_map_stats
print_stats –s

DEGREE OF REDUCTION IN NODE AND LITERAL
Table-2 shows the degree of reduction in benchmark
circuit. Here B12 circuit have maximum degree of
reduction in node as well as literal is 0.857 and 0.850
respectively. In some of the benchmarks, i.e. PDC, SPLA,
DES and K2, number of node and literals are increased,
but area is reduce as shown in the Table-2.

OPTIMIZATION BY ABC
AIG rewriting is implemented in the sequential logic
synthesis and verification system, ABC, as commands
rewrite, refactor and balance. A rewriting script, resyn2,
has 10 passes over the network as follows : b; rw; rf; b;
rw; rwz; b; rfz; rwz; b. In the abbreviation notation, b
(balance) stands for AIG balancing, rw/rf (rewrite/refactor)
stands for AIG rewriting/refactoring, and rwz/rfz is the
same but with zero-cost replacement allowed.

The resyn2 script optimizes area under delay constraints.
It starts by balancing to reduce delay upfront as much as
possible. Next, rewriting/refactoring and balancing are
interleaved. During this, rewriting/refactoring tries to
reduce area while not increasing area. Zero-cost
replacements are enabling later in the script to facilitate
creating new rewriting opportunities. This resyn2 is
stopped after three iterations.

DEGREE OF REDUCTION IN MVSIS AND ABC
This section compares AIG rewriting in ABC with logic
synthesis in MVSIS on MCNC benchmark.
Table 4 shows that Node reduction with MVSIS
(script.rugged) and ABC (resyn2), and also shows that
area and delay reduction of mapping of optimize
benchmark. ABC (resyn2) based on area optimization
under delay constraints. Therefore in some benchmarks
delay is increased as compare to MVSIS (script.rugged).

CONCLUSION
After comparing AIG rewriting in ABC with logic synthesis
in MVSIS on MCNC benchmark. We conclude that AIG
rewriting is an innovative technique for combinational logic
synthesis. This experiment shows that AIG rewriting often
leads to quality comparable or better than those afforded
by the logic synthesis script in MVSIS. Table 4 shows that
Node reduction with MVSIS (script.rugged) and ABC
(resyn2), and also shows that area and delay reduction of
mapping of optimize benchmark.

References
[1] “Innovative Verification and Synthesis Techniques for

Achieving High-Quality SoC Designs” Hong-Zu
Chou, Department of Electrical Engineering ,College
of Electrical Engineering and Computer Science,
National Taiwan University, June 2010

[2] “Logic Synthesis for VLSI Design” Richard L Rudell,
University of California, Berkley, California

[3] “Logic Synthesis and Optimization Benchmarks User
Guide- Version 3.0” - Saeyang Yang

[4] “Optimizing behavioral transformations using taylor
expansion diagrams’ A Dissertation Presented by
QIAN REN, University of Massachusetts Amherst

[5] “Optimization of Multi-Valued Multi-Level Networks”-
M.Gao, J-H. Jiang, Y. Jiang, Y. Li, A. Mishchenko, S.
Sinha, T. Villa and R. Brayton; 32nd IEE International
Symposium on Multiple-Valued Logic (ISMVL’02)

[6] “DAG-Aware AIG Rewriting – A Fresh Look at
combinational Logic Synthesis”– Alan Mishchenko,
Satrajit Chatterjee, Robert Brayton; DAC 2006

[7] ‘Minimization of Multiple Valued Functions in Post
Algebra’ – Elena Dubrova, Yunjian Jiang, Robert
Brayton

[8] “Multi-Valued Logic Synthesis” Robert K Brayton, Sunil
P Khatri

[9] “Quick Look under the Hood of ABC – A Programmer’s
Manual”, December 25, 2006

[10] Berkeley Logic Synthesis and Verification Group,
University of California, Berkeley, “ABC: A System for
Sequential Synthesis and Verification”,

Hemant Dhabhai, Abhishek Katariya, Geetam Tomar, Yogesh Krishan

27
Journal of Electronic and Electrical Engineering

ISSN: 0976–8106 & E-ISSN: 0976–8114, Vol. 2, Issue 1, 2011

[11] Berkeley Logic Synthesis and Verification Group,
University of California, Berkeley, “Berkeley Logic
Interchange Format (BLIF)”

[12] Donald Chai, Jie-Hong Jiang, Yunjian Jiang, Yinghua
Li, Alan Mishchenko, Robert Brayton “MVSIS 2.0
User’s Manual” , University of California, Berkeley CA
94720

[13] Ramakanth Kondagunturi, Eugene Bradley, Kristi
Maggard, and Charles Stroud, “Benchmark circuits
for analog and mixed-signal string”, IEEE paper, V.
Betz, et al., University of Kentucky

[14] "ABC: An Academic Industrial-Strength Verification
Tool", Robert Brayton, Alan Mishchenko, EECS
Department, University of California, Berkeley, CA
94720, USA

28
XXXXXXXXXXX, Bioinfo Publications

Table 1- Statics of benchmark circuit before and after applying the mvsis (script.rugged)

Table 2- Degree of reduction in node and literal

First Author, Second Author, Third Author, Fourth Author

29
Copyright © 2011, Bioinfo Publications

Table 3- Optimization of Benchmark by ABC on Rewriting Performance

Table 4- Comparison between MVSIS and ABC

