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Abstract- The clustered detection of network attacks represents an extremely challenging goal. Current methods rely on either very special-
ized signatures of previously seen attacks, or on expensive and difficult to produce labeled traffic datasets for profiling and training. In this 
paper we present a completely clustered approach to detect attacks, without relying on signatures, labeled traffic, or training. The method 
uses robust clustering techniques to detect anomalous traffic flows, sequentially captured in a temporal sliding-window basis. The structure 
of the anomaly identified by the clustering algorithms is used to automatically construct specific filtering rules that characterize its nature, 
providing easy-to-interpret information to the network operator. In addition, these rules are combined to create an anomaly signature, which 
can be directly exported towards standard security devices like IDSs, IPSs, and/or Firewalls. The clustering algorithms are highly adapted 
for parallel computation, which permits to perform the unsupervised detection and construction of signatures in an online basis. We evaluate 
the performance of this new approach to discover and to build signatures for different network attacks without any previous knowledge, us-
ing real traffic traces. Results show that knowledge-independent detection and characterization of network attacks is possible, opening the 
door to a whole new generation of autonomous security algorithms.  
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Introduction 
The detection of network attacks is a paramount task for network 
operators in today’s Internet. Denial of Service attacks (DoS), 
Distributed DoS (DDoS), network/host scans, and spreading 
worms or viruses are examples of the different attacks that daily 
threaten the integrity and normal operation of the network. The 
principal challenge in automatically detecting and analyzing net-
work attacks is that these are a moving and ever-growing target 
[1]. 
Two different approaches are by far dominant in the literature and 
commercial security devices: signature-based detection and 
anomaly detection. Signature-based detection systems are highly 
effective to detect those attacks which they are programmed to 
alert on. However, they cannot defend the network against un-
known attacks. Even more, building new signatures is expensive 
and time-consuming, as it involves manual inspection by human 

experts. Anomaly detection uses labeled data to build normal-
operation-traffic profiles, detecting anomalies as activities that 
deviate from this baseline. Such methods can detect new kinds of 
network attacks not seen before. Nevertheless, anomaly detection 
requires training to construct normal-operation profiles, which is 
time-consuming and depends on the availability of purely anomaly
-free traffic data-sets. In addition, it is not easy to maintain an 
accurate and up-to-date normal-operation profile. In this paper we 
present a completely unsupervised method to detect and charac-
terize network attacks, without relying on signatures, training, or 
labeled traffic of any kind. Our approach relies on robust cluster-
ing algorithms to detect both well-known as well as completely 
unknown attacks, and to automatically produce easy-to-interpret 
signatures to characterize them, both in an on-line basis. The 
analysis is performed on packet-level traffic, captured in consecu-
tive time slots of fixed length ΔT and aggregated in IP flows 
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(standard 5-tuples). IP flows are additionally aggregated at 9 dif-
ferent flow levels li. These include (from finer to coarsergrained 
resolution): source IPs (l1: IPsrc), destination IPs (l2: IPdst), 
source Network Prefixes (l3,4,5: IPsrc/24, /16, /8), destination 
Network Prefixes (l6,7,8: IPdst/24, /16, /8), and traffic per Time 
Slot (l9: tpTS). 
The complete detection and characterization algorithm runs in 
three successive stages. The first step consists in detecting an 
anomalous time slot where an attack might be hidden. For doing 
so, time series Zli t are built for basic traffic metrics such as num-
ber of bytes, packets, and IP flows per time slot, using the 9 flow 
resolutions l1...9. Any generic anomalydetection algorithm F(.) 
based on time-series analysis [2]–[6] is then used on Zli t to identi-
fy an anomalous slot. Time slot t0 is flagged as anomalous if F(Zli 
t0 ) triggers an alarm for any of the li flow aggregation levels. 
Tracking anomalies at multiple aggregation levels provides addi-
tional reliability to the anomaly detector, and permits to detect both 
single sourcedestination and distributed attacks of very different 
intensities. 
In our paper we using the K-median algorithm for the clustering. In 
our algorithm we have tried to use the algorithm for clustering data 
streams that results in a constant factor approximation in one pass 
using storage space O(k poly log n ). Here, the data stream is 
divided into chunks of data which is mined in phases. In each 
phase, we find out the weighted medians (facilities). 
The data that has been read is deleted from memory and 
is replaced by the weighted medians. The facilities that have no 
increase in weight are considered as temporal candidate outliers 
for that phase. The next phasei+1 takes the data that has not 
been read along with the weighted medians found till phasei. The 
temporal outliers are checked for its outlierness for a given num-
ber of phases after which it is either declared as an inlier or a real 
outlier. After it has been declared as a real outlier it is further nev-
er used for clustering. The total cost of the product is the sum of 
all the facility costs(depending on 
the number of medians) and the service costs (cost of assigning a 
point to an already opened closest facility). 
 
Related Work and Contribution 
The problem of network attacks and anomaly detection has been 
extensively studied in the last decade. Most approaches analyze 
statistical variations of traffic volume-metrics (e.g., number of 
bytes, packets, or flows) and/or other traffic features (e.g. distribu-
tion of IP addresses and ports), using either single link measure-
ments or network-wide data. A non-exhaustive list of methods 
includes the use of signal processing techniques (e.g., ARIMA, 
wavelets) on single-link traffic measurements [2], [3], PCA [8], [9] 
and Kalman filters [5] for network-wide 
anomaly detection, and sketches applied to IP-flows [4], [7]. Our 
approach falls within the unsupervised anomaly detection domain. 
Most work has been devoted to the Intrusion Detection field, tar-
geting the well known KDD’99 data-set. The detection schemes 
proposed in the literature are based on clustering and outliers 
detection, being [17]–[19] some relevant examples. In [17], au-
thors use a single-linkage hierarchical clustering method to cluster 
data from the KDD’99 data-set, based on the standard Euclidean 
distance for inter-patterns similarity. [18] 
reports improved results in the same data-set, using three different 
clustering algorithms: Fixed-Width clustering, an optimized version 

of k-NN, and one class SVM. [19] presents a combined density-
grid-based clustering algorithm to improve computational complex-
ity, obtaining similar detection results. 
Our unsupervised algorithm has several advantages w.r.t. the 
state of the art: (i) first and most important, it works in a completely 
unsupervised fashion, which means that it can be directly plugged-
in to any monitoring system and start to work from scratch, without 
any kind of calibration or previous knowledge.  
 
Problem Definition 
In this section, we discuss an algorithm (KORM) to find outliers in 
data streams which will be better than the already existing meth-
ods. Here we formally define data streams, kmedian objective and 
outlier detection over data streams. 
Definition 1 (Data Stream): A Data Stream X = {x1 x2, . ..,x n } 
possibly infinite series of objects. xi is represented by n dimen-
sional vector i.e., xi = (x1i, x2i, …………., xni ) therefore data pro-
jected to the kth dimension from the data stream X is represented 
as 
Xk= x1k, x2k, …………., xnk 
Definition 2 (k‐median ): Given a set X of n points from some met-
ric space, an integer k, and k members c1,.., ck of the metric 
space, the k–Median cost of using c1,. . . , ck as medians for X 
(or, simply, the k–Median cost of c1,. . . , ck on X) is Σ x _ X min1 
≤ i ≤ k { dist (x, ci)}. 
So the cost of a set of medians is the value of the k–Median objec-
tive function. The k‐median objective function is to minimize the 
sum of assignment distances. Each assignment distance over real 
spaces is replaced by their squares. 
Definition 3 (Outlier ): Given a data space in multiple dimensions 
A1,……,Am with domains D1,……,Dm respectively, let the data 
stream D be a sequence of data objects, where each data object t 
_ D1 X……X Dm.. Our task is to online detect if a new coming 
data is an outlier. 
Let data stream objects are elements of a metric space on which 
we can define a distance function. We consider a data stream as 
chunks of data 
X= X 1, X 2, …………, X m 
where every chunk contains specified number of n points.  
In order to deal with the processing of data stream to find outliers 
we proposed an algorithm, that would 
for a given chunk of data find weighted medians (the weight of the 
median is the number of points assigned to it ) and temporary 
outliers and delete that summary chunk of data from memory. By 
this way the freed memory could be used for the next upcoming 
data chunk.  
In Fig. 1 below, only the weighted medians marked with black are 
passed to the next phase and the points allotted to the medians 
are deleted. 
 
 
 
 
 

 
 
 
 

Fig.1- Weighted medians passed from Phase i to Phase i+1 
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In our method we do not declare a point as an outlier for the data 
stream but call it a temporal outlier for the given chunk of data. 
This point may be an outlier for the present data but may not be 
an outlier for the next data chunk as the data stream is dynamic. 
We would check this temporal candidate outlier for a given num-
ber of data chunks and if it is an outlier for the next given fixed 
number of stream chunks we declare it as an outlier for the data 
stream and is not included further for clustering. 
Most of the existing work use k-NN approaches for outlier detec-
tion which involves parameters R and k, to be provided by the 
user and require pair wise distance calculations which makes it 
computationally expensive. The clustering approach for outlier 
detection using k-mean provides a better solution than k-NN but it 
is very rigid about the value of k. It provides good clustering re-
sults and at the same time deserves good scalability. However, 
our algorithm for detecting outliers relaxes the value of k and uses 
minimum k-medians(facilities) and the maximum k log(n). The 
flexibility in the value k, assures better stability to our k-median 
solution than the k-means. It runs in polylogarithmic space i.e. O(k 
poly log(n)) and results in a constant factor O(1) approximation, 
the algorithm is randomized and has high probability.  
 
Automatic Characterization of Attacks 
The following task after the detection of a group of anomalous 
flows is to automatically produce a set of K filtering rules fk(Y), k = 
1,. .,K to characterize them. In the one hand, such filtering rules 
provide useful insights on the nature of the anomaly, easing the 
analysis task of the network operator. On the other hand, different 
rules can be combined to construct a 
signature of the anomaly, which can be used to easily detect its 
occurrence in the future. To produce filtering rules fk(Y), the algo-
rithm selects those sub-spaces Xi where the separation between 
the anomalous flows and the rest of the traffic is the biggest. We 
define two different classes of filtering rule: 
absolute rules fA(Y) and relative rules fR(Y). Absolute rules are 
only used in the characterization of small-size clusters, and corre-
spond to the presence of dominant features in the flows of the 
anomalous cluster. An absolute rule for feature j has the form fA
(Y) = {yi ∈ Y : xi(j) == λ}. For example, 
in the case of an ICMP flooding attack, the vast majority of the 
associated flows use only ICMP packets, hence the absolute filter-
ing rule {nICMP/nPkts == 1} makes sense (nICMP/nPkts corre-
sponds to the fraction of ICMP packets). 
On the other hand, relative filtering rules depend on the relative 
separation between anomalous and normal-operation flows. Basi-
cally, if the anomalous flows are well separated from the rest of 
the traffic in a certain partition Pi, then the features of the corre-
sponding sub-space Xi are good candidates to define a relative 
filtering rule. A relative rule defined for feature j has the form fR(Y) 
= {yi ∈ Y : xi(j) < λ or xi(j) > λ}. We shall also define a covering 
relation between filtering rules: we say that rule f1 covers rule f2 
↔ f2(Y) ⊂ f1(Y). If two or more rules overlap (i.e., they are asso-
ciated to the same feature), the algorithm keeps the one that co-
vers the rest. 
In order to construct a compact signature of the anomaly, we have 
to devise a procedure to select the most discriminant filtering 
rules. Absolute rules are important, because they define inherent 
characteristics of the anomaly. Regarding relatives rules, their 

relevance is directly tied to the degree of separation between 
flows. In the case of outliers, we select the K features for which 
the normalized distance to the normaloperation traffic (statistically 
represented by the biggest cluster in each sub-space) is among 
the top-K biggest distances. In the case of small-size clusters, we 
rank the degree of separation to the rest of the clusters using the 
well-known Fisher Score (FS) [16], and select the top-K ranked 
rules. The FS basically measures the separation between clus-
ters, relative to the total variance within each cluster. To finally 
construct the signature, the absolute rules and the top-K relative 
rules are combined into a single inclusive predicate, using the 
covering relation in case of overlapping rules. 
 
Experimental Evaluation 
We evaluate the ability of the unsupervised algorithm to detect 
and to automatically construct a signature for different attacks in 
real traffic from the WIDE project data repository [20]. The WIDE 
network provides interconnection between different research insti-
tutions in Japan, as well as connection to different commercial 
ISPs and universities in the U.S.. Traffic consists of 15 minutes-
long raw packet traces; the traces we shall work with consist of 
packets captured at one of the trans-pacific links between Japan 
and the U.S.. Traces are not labeled, thus our analysis will be 
limited to show how the unsupervised approach can detect and 
characterize different network attacks without using signatures, 
labels, or learning. We shall begin by detecting and characterizing 
a distributed SYN network scan directed to many victim hosts 
under the same /16 destination network. Packets in Y are aggre-
gated using IPdst/24 flow resolution, thus the attack is detected as 
a small-size cluster. The length of each time slot is ΔT = 20 se-
conds. As we explained in section III, the SSC-EAbased clustering 
algorithm constructs a new similarity measure between flows in Y, 
using the multiple clustering results obtained from the different sub
-spaces. Let us express this new similarity measure as a n×n 
matrix S, in which element S(i, j) represents the degree of similari-
ty between flows I and j. Figure 1.(a) depicts a histogram on the 
distribution of inter-flows similarity, according to S. The structure 
of flows in Y provided by S evidences the presence of a small 
isolated cluster in multiple sub-spaces. Selecting this cluster re-
sults in 53 anomalous IPdst/24 flows; a further analysis of the 
packets in these flows reveals multiple IP flows of SYN packets 
with the same IPsrc address and sequential IPdst addresses, 
scanning primary the same TCP port. Such a behavior is charac-
teristic of a worm in the spreading phase. Regarding filtering rules, 
figures 1.(b,c) depict some of the partitions Pi where both absolute 
and top-K relative rules were produced. These involve the number 
of sources and destinations, and the fraction of SYN packets. 
Combining them produces a signature that can be expressed as 
(nSrcs == 1) ∧ (nDsts > λ1) ∧ (nSYN/nPkts > λ2),where both λ1 
and λ2 are obtained by separating clusters at half distance. Sur-
prisingly enough, the extracted signature matches quite closely 
the standard signature used to detect such an attack in current 
signature-based systems [10]. The beauty and main advantage of 
our unsupervised approach relies on the fact that this new signa-
ture has been produced without any previous information about 
the attack or baseline traffic, and now it can be directly exported 
towards any security device to rapidly detect the same attack in 
the future. IP flows are now aggregated according to IPsrc resolu-
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tion. The distribution analysis of inter-flows similarity w.r.t. S se-
lects a compact cluster with the most similar flows, corresponding 
to the set of attacking hosts. The obtained signature can be ex-
pressed as (nDsts == 1) ∧ (nSYN/nPkts > λ3) ∧ (nPkts/sec > λ4), 
which combined with the large number of identified sources 
(nSrcs > λ5) confirms the nature of a SYN DDoS attack. This sig-
nature is able to correctly isolate the most aggressive hosts of the 
DDoS attack, i.e., those with highest packet rate. 
The detection of an ICMP flooding DoS attack. Traffic is aggregat-
ed in IPdst flows, thus the attack is now detected as an outlier 
rather than as a smallsize cluster. Absolute rules are not applica-
ble in the case of outliers detection. Relative rules correspond to 
the separation of the outlier from the biggest cluster in each sub-
space, which statistically represents normal-operation traffic. Be-
sides showing typical characteristics of this attack, such as a high 
packet rate of exclusively ICMP packets from the same source 
host, both partitions show that the detected attack does not in-
volve the largest elephant flows in the time slot. This emphasizes 
the ability of the algorithm to detect attacks that are not necessari-
ly different from normal-operation traffic in terms of volume, but 
that they differ in other, less evident characteristics. The obtained 
signature can be expressed as (nICMP/nPkts > λ6) ∧ (nPkts/sec 
> λ7). 
More evaluation results can be found at [12], including an evalua-
tion of true-positives/false-alarm rates, as well as a comparison 
against other methods for unsupervised anomaly detection. These 
results confirm the outperforming ability of our approach in the 
unsupervised anomaly detection domain. 
 
Computational Time and Parallelization 
The last issue that we analyze is the Computational Time (CT) of 
the algorithm. The SSC-EA-based algorithm performs multiple 
clusterings in N(m) low-dimensional sub-spaces Xi ⊂ X. This 
multiple computation imposes scalability issues for on-line detec-
tion of attacks in very-high-speed networks. Two key features of 
the algorithm are exploited to reduce scalability problems in num-
ber of features m and the number of aggregated flows n to ana-
lyze. Firstly, clustering is performed in very-low-dimensional sub-
spaces, Xi ∈ R2, which is faster than clustering in high-
dimensional spaces [15]. 
Secondly, each sub-space can be clustered independently of the 
other sub-spaces, which is perfectly adapted for parallel compu-
ting architectures. Parallelization can be achieved in different 
ways: using a single multi-processor and multi-core machine, 
using network-processor cards and/or GPU (Graphic Processor 
Unit) capabilities, using a distributed group of machines, or com-
bining these techniques. We shall use the term ”slice” as a refer-
ence to a single computational entity. 
 
Conclusion 
The completely unsupervised algorithm for detection of network 
attacks that we have presented has many interesting advantages 
w.r.t. previous proposals. It uses exclusively unlabeled data to 
detect and characterize network attacks, without assuming any 
kind of signature, particular model, or canonical data distribution. 
This allows to detect new previously unseen network attacks, 
even without using statisticallearning. By combining the notions of 
Sub-Space Clustering and multiple Evidence Accumulation, the 

algorithm avoids the lack of robustness of general clustering ap-
proaches, improving the power of discrimination between normal-
operation and anomalous traffic. We have shown how to use the 
algorithm to automatically construct signatures of network attacks 
without relying on any kind of previous information. We claim that 
such an approach can be used do devise autonomous network 
security systems, in which the SSC-EA-based algorithm runs in 
parallel to any standard security device, producing specific signa-
tures to unknown anomalous events. Finally, and contrary to pre-
vious work on clustering for detection of network attacks, we have 
evaluated the computational time of our algorithm. Results confirm 
that the use of the algorithm for on-line unsupervised detection 
and automatic generation of signatures is possible and easy to 
achieve for the volumes of traffic that we have analyzed. Even 
more, they show that if run in a parallel architecture, the algorithm 
can reasonably scale-up to run in high-speed networks, using 
more traffic descriptors to characterize network attacks. 
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