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Abstract- The contribution of the multi-quark cluster states have been invoked in the wave function of  
6
Li. The Hadron-

Quark Hybrid (HQH) model used here combines hadronic (traditional nuclear) and quark-cluster wave functions. The 
hadronic wave function is based on realistic nuclear wave functions. Variational Monte Carlo method is used for the 
calculation of the hadronic wave function. The quark-cluster wave function is based on a relativistic harmonic oscillator. The 

effect of multi-quark clusters on the charge form factor of  
6
Li at large momentum transfer region has been investigated. The 

existing experimental data is in good agreement with the results that have been obtained.  
Keywords- Nuclear Physics, Nuclear Charge Form factor, Elastic Electron Scattering, Few Nucleon Systems, Relativistic 
Harmonic Oscillator, Realistic Nuclear Potentials 
 
Introduction 
The high energy electron scattering has been a successful 
tool in providing vital information concerning charge and 
current distribution admixtures in nuclei, high momentum 
components of the nucleus wave functions, short range 
correlation effects, meson exchange currents, quantum 
chromodynamics, and quark degrees of freedom in nuclei.  
Shell model has been quite successful in analyzing electron 
scattering data particularly in the low momentum transfer 

region. In the case of 
6
Li, however, unlike other p-shell nuclei, 

one has to introduce some modification to the pure shell 
approach in order to obtain an agreement with the observed 
data , as in Lodhi  [1] -d cluster 
wave functions, as in  Bergstrom [2], and the introduction of 

 as in Ryzhikh  [3], brought some 

improvements in the form factor of 
6
Li. The conventional 

nuclear physics form factors, where hadrons (nucleons and 
mesons) dominate the dynamics of interaction, fall down more 
rapidly as function of the invariant momentum transfer 
squared, q 2 , than the experimental results for increasing q 2 , 
McCarthy  [4], Li  [5], F. P. Juster  [6], and D. H. Beck  [7]. 
Ordinary nuclear physics assumes that nuclei are loosely 
bound systems of elementary particles, namely, structureless 
neutrons and protons. Accordingly, in impulse approximation, 
the scattering off a nucleus is treated as a simple 
superposition of scattering off free nucleons at rest. The 
deviation of the form factors under this model from 
experimental data has led to several approaches. One of the 
assumptions that could be made is that there were clustering 
phenomenon of quarks as integral multiple of three-quark 
configurations in addition to the neutron-proton bound states 
of nuclei in ordinary nuclear physics, Kizukuri  [8], Namiki  [9], 
Vary  [10], P. Hoodbhoy  [11], and L. Kisslinger  [12]. The 
European Muon Collaboration Effect (EMC), Aubert  [13], has 
revealed a difference in the structure functions of bound  
 

nucleons compared to that of free nucleons, thus leading to 
believe in a quark structure manifesting in the nucleus. In the 
light of the Quark Degrees of Freedom (QDF), multi-quark 
clustering model for understanding the nuclear structure has 
been seen as important, Butler and Miller [14]. Recently, an 
experiment on inclusive electron-proton and electron-deuteron 
inelastic cross sections has been done at Jefferson Lab to 
confirm the hadron-quark duality in the resonance region, at 
large momentum transfers by S. P. Malace [15]. 
At low momentum transfer region, the conventional hadron 
wave function dominates and the multi-quark clusters effect is 
almost totally insignificant. On the other hand, in the large 
momentum transfer region, the conventional hadron physics 
contribution to the form factor decreases rapidly and multi-
quark cluster effect becomes dominant.  

These ideas were independently applied to 
6
Li  charge form 

factor using a multi-quark cluster configuration. Khalil [16] 

used a phenomenological model for 
6
Li charge form factor in 

terms of multi-quark cluster configuration in the region of  4 
fm-2 < q 2 < 32 fm-2 . These calculations predict no diffraction 
minimum in the expected region of momentum transfer 
around q 2 ≈ 8 fm-2. Instead, they seem to over-correct the 
charge form factor when compared with the experimental 
data, Frosch  [17] and Li  [5]. In a previous paper, Lodhi  [1], 
the multi-quark cluster effect on the charge form factor of 
some light nuclei was presented in which preliminary results 

for 
6
Li  were also reported. They showed good agreement 

with the observed data and the first diffraction minimum and 
the second maximum in the experimentally observed region. 
In this paper, somewhat detailed calculations of the charge 

form factor of 
6
Li  in the Hadron-Quark Hybrid (HQH) model 

are presented up to the momentum transfer squared,  
Q2 = 100 fm-2. In this model, the quark part of the wave 

function of  
6
Li  have been chosen to be the relativistic 

harmonic oscillator, Namiki  [9]. 
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Wave Function of  
6
Li  in the HQH Model 

In this model of  
6
Li  nucleus, the conventional nuclear 

physics wave function dominates in the low momentum 

transfer region. In this region, the 
6
Li can be further split 

into 
4
He and deuteron and treat their densities as 

overlaps as done by G. Z. Krumova  [18]. This approach 

is similar to a recent treatment of  
4
He as four cluster 

channels, i.e., p-
3
H , n-

3
He,  d-

2
H, and  d-

2
H  as 

proposed by H. M. Hofmann and G. M. Hale [19]. It is 
also similar to the approach proposed for exotic nuclei 

such as many exotic nuclei, such as 
6
He (= α + n + n) or 

11
Li(= 

9
Li + n + n) by A. Damman and P. Descouvemont 

[20]. Recently, a study of  α-cluster structure above 
doubly closed shells has been done based on the 
generalized density-dependent cluster model by 
Dongdong Ni and Zhongzhou Ren [21].  
The contribution of the multiquark cluster configurations to the total 
wave function is small. However, the multiquark cluster 
configurations dominate in the high momentum transfer region.       
The total wave function, including both hadronic (nuclear) part and 
quark part, is given by 
 

  A A

r r

A

r ro o   1 2
Hadronic Quark

   (1) 

 
where   

A = 6 for 
6
Li, 1 2 ,  12

2

2

1     and  ro ≈ 0.50 fm  is the 

cut-off radius, i.e. the boundary that separates the hadronic and 
quark regions. It is assumed that the hadronic part of the above 
wave function has non zero value only outside the hard core region 
of the ordinary nucleon-nucleon interaction, while the quark part 
exists only inside the hard core region. 
      For the hadronic part of the wave function, two wave 
functions have been considered. The first one is the 
nuclear shell-model harmonic oscillator bases with a 
Jastrow-type correlation function S. E. Massen [22]: 
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of the nuclear such that  
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 kroj   is a spherical Bessel function and 
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 . The most common approach of 

invoking the short-range correlation is to multiply the 
single particle density by the above Jastrow-type function 
which satisfies the properties of a nucleon-nucleon 
interaction. The correlated wave function is, therefore: 
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6
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   is the harmonic oscillator 

basis given by: 
 

      m
l

Yr
nl

Rr
nlm


    where  

     222

1

22

2

1
exp rLrrNrR

l

n

l

nl 










  

 
The second wave function considered is a variational 
wave function derived from the realistic Argonne v18 and 
Urbana IX potentials. Variational Monte Carlo technique 
is used for the derivation of the wave function. The 
general format of the wave function is provided by 
Wiringa and Schiavilla [23] and it is as follows: 

  P

ji

LS

ij

kji

TNI

ijkijkV UUU 







 



1

    (2) 

where the pair wave function , P , is given by  

  J

ji

ijP US 







 



1         (3) 

The ijU , 
LS

ijU , ijkU , and 
TNI

ijkU   are non-commuting 

two- and three-nucleon correlation operators, and the S 

is a symmetrization operator. J  is an anti-symmetric 

Jastrow wave function, R. B. Wiringa at. al [24], Pudliner  
[25], R. B. Wiringa et. al [26], and Muslema Pervin [27]. 

In the multi-quark cluster configuration 
6
Li wave function 

can be written as: 
 

qqqqcqqqqqcHadroniccLi 333933336 321

6 

+  

qqqqcqqqcqqqc 33663693312 654 

+ 
qcqqcqqcqqcqqqc 1831599612666 1110987 

            (4) 
 
The first term in Equation (4) is the hadronic part of the 

wave function represented by V  in Equation (2). The 

remaining terms represent the multiquark cluster wave 
functions which can be written symbolically as: 
 

776655443322  ccccccquark

 

+ 111110109988  cccc
 

     (5) 

 
The coefficients  c2, c3, c4, etc., are yet to be determined.  

The quark part of the wave function is calculated from a 
relativistic harmonic oscillator (RHOM) model: 
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A transformation matrix is used to get the expression 
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       (8) 

n is given for the n-quark bound 

state system by the relation  n n k
3

2 . The coupling 

constant    in the RHOM is to be determined as to give 
the Regge slope for a three quark bound system 

(nucleon); specifically it is given by  2

3

3 3  so that 

 = 0.096 (Gev/c)2 = 2.4fm-2 , Namiki  [9]. 
The n for n-quark 

n thus generated and the 
parameter Mn, which is the physical mass of an n-quark 
cluster system in a bound state, are listed in the following 
table (Table 1). Pµ and P  are four-momenta vectors and 
g  is the metric tensor.  
Since the n-quark sub-system occurs as a cluster 
configuration in a given system, the parameter Mn is 
treated as the so-called symmetric mass of the 
corresponding multiplets, Namiki  [9]. Like nuclear 
masses, the mass of a 3n-quark cluster is assumed to be 
less than the mass of the corresponding n nucleons 
forming that cluster, Koch and Miller [28]. The values of 
M3 and M6 are chosen from the earlier work on electron-
deuteron elastic scattering of Kizikuri et al. [29] and 
Namiki  [9]. The values of M9 and M12 are used from the 
work of Namiki et al. [9] obtained from the electron-
helium scattering. The effective mass parameter 
belonging to larger values of n like M15 and M18  are 
determined from the assumption that the ratio of the 
number of quarks in a given cluster to that of the 
preceding cluster is equal to the ratio of their respective 
masses.  
 
In other words, it establishes the relation as 
 

n

n

M

M

n

n 33 


    

 (9) 
 
 In the analogy of nuclear cluster model, Lodhi [30] and 
Wildermuth  [31], a quark cluster wave function 
consisting of, say, two clusters of  m and n quarks can 
be written in the symbolic form  

     mnjinm XmqnqN RR        (10) 

 

where i  and j  describe the  n and m quark clusters 

respectively,  mnX RR   refers to the relative 

motion between the two clusters and N is the 
normalization constant which antisymmetrizes the wave 
function completely with respect to the exchange of all 
pairs of particles involved. Specifically, the wave function 
of a system consisting of two clusters of two quarks each 
is written in the RHOM as: 
 

         P.XPX iPRXPrPrNrrR jiqq   exp;,,,,,; 212122 

         (11) 
 
where X and P are the center of mass coordinate and 
momentum respectively, R is the relative coordinate 
between the two clusters and r1 and r2 are the relative 

coordinates inside each cluster, Kizukuri  [29]. 
 
The Admixture Coefficients 
There are variety of definitions found in the literature for 
the probability of formation of quark clusters in a given 
nucleus. One can define in a most straightforward 
manner as the probability of a nucleus to be found in a 
certain quark cluster configuration. This probability 
corresponds to the square of the amplitude in a cluster 
expansion of the nuclear wave function. Accordingly, the 

squares of the coefficients 
2

ic in the expansion of the 

wave function given by Equation (5) correspond to those 
probabilities. A slightly different definition than the 
preceding one may be given as the probability that a 
quark chosen at random in a given nucleus is obtained 
from an n-quark cluster where n = 3, 6, 9, . . .. Obviously, 
this probability is not in general the square of the 
coefficients in the expansion of Equation (5) but certainly 
related. These probabilities can be transformed in terms 
of the squares of the admixture coefficients. If we let p

i
 

represent the probability 
that a quark is chosen at random from an i-quark cluster 
where i-quark cluster appears in several channels with 
amplitudes c

i
 in Equation (5). The relation between 

various p
i
 and c

i
 can readily be written for 

6
Li as follows: 
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These equations can be inverted to express 
2

ic  in terms 

of  p
i
. By the same reasoning as in Namiki et al. [9], the 

6q-6q and 9q-3q cluster configurations 

are equally probable. Likewise, 
2

4

2

3 cc  , 
2

6

2

5 cc  , 

2

10

2

9

2

8

2

7 cccc  . With this assumption, The 

previous equations are converted as follows: 
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The quark cluster probabilities have been evaluated for 

light nuclei, namely 
2
H and 

3
He by M. Sato  [32]. For 

heavier nuclei, only qualitative estimates have been 
used. For this work, those admixture coefficients have 
been evaluated from a hydrodynamical approach based 
on the flucton theory, Burov   [33]. A more recent 
approach invokes the effect of nuclear surface 
fluctuations and thermodynamic influences on the charge 
form factor of light nuclei. S .E. Massen  [34] and X. J. 
Wen  [35]. 

Let these probabilities be denoted  
2

kc  where  k = 1 

corresponds to three-quark cluster (i.e. ordinary hadronic 
component of the wave function), k = 2 corresponds to 
six-quark cluster, and so on. The probability of finding k 
nucleons of the nucleus of mass number A in the flucton 

volume 
3

3

4

 rV    is given by: 
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Vo is the nuclear volume given by  
3

3

4

oo rV  . Here 

Bk allows for the isotopic composition of a function with 
kN neutrons and kZ protons, and is given by: 
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The other parameters r  and ro are chosen to be 0.75 

fm and 1.2 fm, respectively [29]. The calculated 
admixture coefficients are listed in the following table. 

6Li Charge form Factor 
With the separation of hadron and quark parts of the 
wave function 

Described earlier, the charge form factor of  6Li can be 
written in Hadron-Quark Hybrid (HQH) model as: 
 

     22
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22

1

2 qFqFqF qN  
   

 (14) 

 
with the conditions that  F(0) = FN(0) = Fq(0) = 1.  
With the wave function given by Equation (5), the form 
factor can be written as: 

 2
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       (15) 

where   2QFi  correspond to the cluster configuration 

terms respectively given by Equation (4). The first term in 
the above equation is recognized as: 
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Is the contribution from the hadron part. The remaining 
ten terms are contributed by various quark clusters. In 
the first Born approximation, the elastic nuclear charge 
form factor is given by: 
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         (16) 

The wave function   is the realistic wave function. We 

used variational Monte Carlo method similar to the one 
used earlier by R. B. Wiringa and R. Schiavilla [23].
  
The hadron part of the wave function distributing over a 
wide range in the exterior region does not overlap with 
that of the quark-cluster components, confined with a 
narrow range in the interior region, as far as their main 
parts are concerned. In the zeroth order of 
approximation, the orthogonality of the hadron and 
quark-cluster components can be assumed. Therefore, 
no cross terms over hadron and quark cluster parts are 
included in these calculations. The charge form factor for 
the multi-quark cluster channel is calculated in the 
RHOM basis which governs their relativistic bound 
systems. It should depend on the center-of-mass 
momentum. Because of this dependence, the final inner 
wave function is different from the initial one.  
Using the first Born approximations, the form factor for 
the quark-cluster part is found to be: 
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One feature of Equation (17) is that the form factor 

 2qFnq  obeys the asymptotic behavior, i.e., 

 2qFnq   n
q




12
 in the region of high momentum 

transfer, which is in agreement with the experimental 
data in Brodsky and Chertok [36]. 
 
An overlapping integral that takes various n-quark 
clusters into consideration, as in Namiki et al [9], is given 
by: 
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          (18) 
where  r  stands for the four-dimensional relative 
coordinate, P

i
 and P

f 
 for the initial and final center-of-

mass four momenta, respectively. In the above 

equations, the term 
2

2

2 nM

q
 

would become 
22

22

2 nMc

q
 if   and  c are not taken 

as one. 
Equations (17) and (18) are used  to calculate the quark-

cluster contributions to the total charge form factor of  6Li 
as follows: 
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The terms Fnc arise from the relative coordinates of  n 

clusters and is given by: 
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2 1   where  m  is of the order 

of  1.0 GeV/c
2
 = 5.0 fm  as in Namiki  [9]. 

 
Results 

The elastic electric charge form factor of  6Li has been 
calculated in the HQH model with the variational Monte 
Carlo method mentioned earlier. The result is presented 
in Figure 1 up to a range of momentum transfer squared 

100 fm-2. The elastic charge form factor of  6Li has also 
been calculated using the hadronic (nuclear) wave 
function only, i.e., without quark degrees of freedom, and 
it is presented in Figure 2. The experimental data are 
taken from Li  [5] and Bergstrom  [37]. In the low 

momentum transfer region (q 2 ≈ 20 fm-2), the hadron 

part dominates but as q2 increases the quark-cluster 
component starts showing its dominance. In that region, 

q 2 ≤ 20 fm-2, the form factor of  6Li can be produced 
quite accurately (as a system of non-relativistic nucleons 
interacting with each other) in agreement with the 
experimental data. There is sufficient experimental data 

beyond q 2 ≈ 20 fm-2 to compare to the theoretical 
predictions. However, these predictions for the electric 

charge form factor of  6Li (when quark-cluster 
contributions are included) show some interesting 
features pertaining to the complexity of charge 

distribution in 6Li. These features, in the high momentum 
transfer region, are revealed by the elastic scattering of 
high energy electrons.   
 
Conclusion 
Quark-clustering phenomenon in nuclei is relatively a 
new tool in under-standing nuclear and quark physics at 
high energies in nuclei. The success of this approach in 
light nuclei has led to the calculation of the charge form 

factor of  6Li. In these calculations, the quark-cluster 
contribution has been shown playing important role at 
the high momentum transfer region. The calculated 
charge form factor of 6Li is in good agreement with the 
experimental values of  Li  [5], Lapiks [38], and 
Bergstrom et al. [2]. The second minimum and third 

maximum in the form factor have been predicted at q 2 ≈ 

25 fm-2 and q 2 ≈ 34 fm-2, respectively, thus shifting them 
toward higher momentum transfer region than predicted 
by purely hadron wave function. Also, the third maximum 
is raised by about two orders of magnitude above the 
one predicted by corresponding hadron wave function. In 
the absence of the experimental data in the high 
momentum region, this in itself is a significant 
contribution from the small admixture of multi-quark 
configurations in improving the hadronic (conventional 
nuclear physics) results. A more definite conclusion on 

the nature of multi-quark admixtures in 6Li  requires a 

more detailed experimental investigation of 6Li  form 
factor at high momentum transfer region than what is 
presently available. 
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Fig. 1-Theoretical harmonic oscillator calculations of the electric charge form  factor of  
6
Li without quark degrees of freedom 

(red curve) and with quark degrees of freedom (black curve). Data are as indicated. 
 
                                

 
 
Fig. 2-Theoretical realistic wave calculations (100 million moves in the Monte  Carlo simulation) of the electric charge form  

factor of  
6
Li without  quark degrees of freedom (red curve) and with quark degrees of freedom (blue curve). Data are as 

indicated.                                                                                              
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Table 1- n and the parameter cMn 

 

Table 2: Admixture Coefficients and their values 

 

 
 
 
                                  


