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Abstract- This is a survey on the relationship between logic and games. What do games have to save about logic, 
and conversely what does logic have to say about games? Johan Van Benthem in his lengthy manuscript Logic In 
Games1 sets forth an axiomatization of game equivalence and asks two main questions. The first is whether the 
axioms are complete for the semantic notion of game equivalence. Van Benthem also cautions that it is important to 
distinguish that games are “dynamic” activities, and that the meaning of a game is not fully captured by the assertion 
player has a winning strategy in it, and hence  the second question is what constitutes this “dynamic aspect”.  
In this survey project, I will briefly discuss the difference between using games to determine results about logic and 
using logic to determine results about games. I then will discuss two responses in the affirmative to the first question 
by Van Benthem about the axiomatization of game logic with regard to logic in games. One is by Goranko which 
employs translations into modal logic to obtain the completeness result; the second is by Venema which uses a more 
general approach to show that game algebras and board algebras are isomorphic. I will also offer what seems to be a 
novel approach in responding to Van Benthem’s second question by suggesting that games are not fully captured by 
understanding whether a player has a winning strategy or not because games involve a dynamic action between 
intelligent agents who are trying to out think each other. In order to represent this dynamic process mathematically I 
propose that one must classify strategies themselves, and I will suggest ways of classifying strategies in the context of 
modal logic. 
 

                                                        
1 Van Benthem, J., Logic in Games, Lecture notes, ILLC, University of Amsterdam, 2000 

Introduction 
There is a close connection between logic and games 
in the sense that certain theorems about logic have 
game theoretic counterparts. For example, there is a 
connection between truth in a model and wining 
strategy in games. Henkin style completeness results 
can be viewed in terms of games. Games are 
employed in descriptive complexity and finite model 
theory with EhrenFreuct- Fraisse games and pebble 
games. Logic, however, can also be used as a 
general meta-theory of games. What is a game? 
When are two games equivalent? What are game 
invariances? Along these lines, we can examine 
game theory from the standpoint of an algebra of 
games, operations on games, and an axiomatization 
of game theory with respect to the standard 
operations. 
 
Games in Logic vs. Logic in Games: 
Games in Logic: 
Standard Connection: Semantic Evaluation 
Games  
Propositional Logic: Given some fixed evaluation  for 
propositional atoms, a game is defined for each 
formula  between V(verifier) and F(falsifier).  

 
Negation changes player roles. Disjunction allows V 
to chose. Conjunction allows F(falsifier) to chose.  
Winning or losing occurs at an atom, where if it is true 
according to , V wins. If it is false according to , F 
wins. 
Easy Result: Formula  is true under  iff Verifier has 
a winning strategy in the game for . 
 
1-st Order Logic: The rules are extended to first 
order logic where given x, V picks an object d, and 
play continues with respect to [x/d]. Given x, F 
chooses the object. Atomic formulas are decided by 
the relations in the model. 
By induction on formula complexity, it is not hard to 
show that 
 is true in M iff Verifier has a winning strategy for the 
evaluation game played in M. 
Some Standard Results in Descriptive Complexity 
using Games: 
Theorem (Fraise-Ehrenfeuct): 
 
A and B satisfy the same first order sentences of 
quantifier rank r iff the Duplicator wins the r-move E-F 
game on A and B 
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Definability and E-F Games: Given a Boolean query 
Q on a class of structures C closed under 
isomorphisms, Q is first order definable on C iff there 
is an r such that for all A, B in C if A |= Q and the 
Duplicator wins the r move E-F game on A and B then 
B|=Q 
 
Methodology for First-Order Definability: If for 
every r,  there exist structures A and B such that A |= 
Q and B | Q and the Duplicator wins the r-move E-F 
game on A, B then Q is not first order definable 
 
Theorem (Barwise-Immerman)2: A and B satisfy the 
same Lk w sentences iff the Duplicator wins the k-
pebble game on A and B 
 
Definability and Pebble Games3: Given a Boolean 
query Q on a class of structures C closed under 
isomorphisms, Q is Lw w-  definable on C iff there 
exists a k such that for all A, B in C if A |= Q and the 
Duplicator wins the k-pebble game on A and B then 
B|=Q 
A standard result for the methodology of  Lw w-  
definability :  A query is not Lw w- definable if there 
are for every k, structures Ak and Bk such Ak | Q and 
Bk | Q but the Duplicator wins the k-pebble game on 
Ak and Bk. 
 
Proof of Completeness Theorem in 1-st Order Logic 
via Games: 
The Game G is played in which II claims there is a 
model and I challenges this claim. 
Define the rank of a formula by p() = length() + 
max{ i: xi occurs in } 
 = (x0,.., xn) . In each round of the game, I plays a 
formula and II responds by playing either 0 or 1. 
 
Rules: 
1)  Each i = 0,1 
2)  Each i  is a formula with | i |   i + 2 
3)  If i = xj (x1,..xn) and  i = 1 then II must play 

1 in response to (x1,..xj-1,x|| + i + 1, xj+1,…,xn) 
4)  If i = ,  i = 1 
5)  If i = k   j then i = 1 iff k = 1 and j = 1 
6)  If i = k then i = 1 iff k = 0 
 
The first player to play against the rules loses 
Lemma:  Suppose II wins the game G then there 
exists a structure  and a1,..,an such that M | [ 
a1,..,an] 
(induction on formula complexity) 
 
Gale Stewart Determinacy for Open games4 
 
                                                        
2 Kolaitis (2002) 
3 Kolaitis (2002) 
4 Hodges (1993) 116 

A  Xw  = {f: w -> X } Associate to A a game GA . 
Rules: ai, bi  X , f(2i) = ai, f(2i + 1) = bi,    I wins if f  
A 
GA is determined if there is a function : X<w  X 
which is a winning strategy for I or II    
Proof of Determinacy for open games:  Assume A 
is open so that for all f  A there exists n  w,  s.t. 
{g  Xw| g|n = f|n}  A Define a sequence of subsets 
of X<w by transfinite induction as follows 
A0 = {t  X<w | {f: f|l(t) = t}  A}  Note: these are 
positions at which I has won 
Suppose A is defined then A+1 is the set of all t  
X<w such that  
 
if t has even length then t ^ a  A for some a  X , if 
t has odd length then t ^ b  A for all b X 
if  is a limit stage then A = <  A Note: there 
must exist  such that A = A+1 

 

Let A =  A 
Two cases:   
1)     A* (corresponds to I wins GA) 
2)     A* (corresponds to II wins GA) 
Let : X<w  Ordinals  {} 
be the function such that (t) = least  such that t 
A+ 1 
 
Lemma) Let t  X<w , Suppose p(t) <  
then 
1) if t has even length then a  X with p(t ^a)  < p(t) 
or p(t) = 0; 
if t has odd length then p(t) = 0 or p(t ^ b) < p(t) for all 
b  X 
 
2) if p(t) =  then if t has even length p(t ^a) =  for 
all a  X, 
if t has odd length then p(t ^ b) =   for some b 
If  () <  then I’s winning strategy is to play to 
reduce  
If  () =  then II’s winning strategy is to play to 
preserve this 
 
Proof: Assume that player  I doesn’t have a winning 
strategy, then there are moves by II so that no matter 
what player I does, player I can’t win. WTS this is a 
winning strategy for II. Suppose not, then since A is 
open , in this run of the game,  f, there is some finite 
stage fn, such that  all extensions are in A, so () 
<  , and I has a winning strategy at this cut 
 
Logic in Games: 
Game Algebra: 
Algebra for Game Equivalence(Goranko) 
atomic games {ga} a  A 
Game operations: , d ,    
Definition: G  H = (Gd   Hd)d 
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 refers to choice of first player ( as to which game is 
being played) 
d  refers to swapping the role of the two players 
 refers to sequential game composition 
 
Right distribution fails in game algebra:  
G1    (G2   G3 )  ( G1   G2  )  (G1    G3 ) 
The reason for this is essentially that [x((x)  (x)) 
 (x (x)  x (x))] is not valid in first order 
logic. A player may have winning strategy to end 
game 1 in a position where she can either win game2 
or game 3, that does not mean that she can always 
end in position where she can win game 2 or always 
end in a position where she can win game 3. 
 
Axioms for Algebra of Games: 
1)  G = Gdd 
2)   is commutative, associative, and indempotent 
3)  G  ( G  H) = G 
4)  G  (H  M) = (G   H)  (G  M) 
5)   is associative 
6)  (G  H)d = Gd  Hd 
7)  (G2   G3 )  G1   = ( G2   G1 )  (G3    G1 ) 
8)  G1    (G2   G3 )   ( G1   G2  ) 
9)  G = G    =   G,  = d 
 
Models for Game Logic are Game Boards,  S, {ia} a 

 A, i = 1,2  where  S is a set of states and ia is an 
atomic forcing relations satisfying forcing conditions, 
ia  S x P(S), of upwards monotonicity, and 
consistency of powers 
Forcing relations are extended to forcing relations for 
all game terms in the natural recursive way. 
sp1GdX iff sp2GX 
sp2GdX iff sp1GX 
spiG  H iff spiGX or spiHX 
spiG H X iff  there exists Z such that spiGZ   and zpiHX 
for each z Z 
 
The meaning of spiGX is that from state s, player i has 
a strategy to play the game G so that if an outcome 
state is attained it is in X 
 
 is a constant symbol of the language, and it is to be 
interpreted as game inclusion in any model,  that is 
given any game board, B,  B |= H   G if G i H for 
each i on B, where 
G i H means that piG  piH  
 
Van Benthem’s first question in his manuscript is 
whether these axioms constitute a complete 
axiomatization for the semantic notion of equivalence. 
That it does was proved first by Goranko5. 
 

                                                        
5 Goranko, V.F., ‘The basic algebra of game equivalences’, 
Studia Logica, 75:221-238, 2003 

(Goranko’s article can be somewhat confusing 
because it often convoludes syntactic and semantic 
notions) 
Goranko’s Completeness result: Every valid game 
term identity of the game algebra can be derived from 
GA in the standard equational logic6 
Goranko’s result relies heavily on a translation of 
game identities into formulas of modal logic which 
preserves validities: 
 
Definition of Canonical Game Terms 
 is a canonical term 
Let {Gik| k  Ki ,  i  I }be finite nonempty family of 
canonical terms and {gik| k  Ki ,  i  I } be a family of 
literals such that gik can be idle only if Gik is idle, then 
 i  I  k  Ki gik Gik is a canonical term 
 
Translation into modal logic: 
         
V = set of atomic variables = {pa} 
 
 Let (q/) be the formula resulting from substituting 
 for all occurrences of q (note that  may be a 
formula of modal logic and not necessarily just a 
variable) 
 
q is an auxiliary variable 
 
M() = q 
M(ga) = � (pa  q) 
M(ga d) = �(pa  q) =  (M(ga))( q/q) 
M(G  H) = M(G)  M(H) 
M(G  H) = M(G)[M(H)/q] 
 
A key observation is that in translating the dual of a 
game, it is not just the negation of the formula for the 
complement of winning states for player one is being 
included(this is essentially the role of substituting  
q/q. I wins when it is possible to make a move so 
that no mater what II does an outcome state where I 
wins is reached. II wins if no matter what I does it is 
always possible to make a move so that the outcome 
state is in the complement of winning states for I.  
 
Theorem7: (Preservation of validity)For any game 
terms G,H, if  H G is valid on all determined game 
boards then 
 |= m(G) m(H) 
 
Pf) By contraposition, suppose M, u does not satisfy 
m(G) m(H), 

                                                        
6 Goranko, V.F., ‘The basic algebra of game equivalences’, 
Studia Logica, 75:226, 2003 
7 Goranko, V.F., ‘The basic algebra of game equivalences’, 
Studia Logica, 75:229, 2003 
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define the game board B as follows: For every X  S 
and s  S: 
 
sp1aX iff M,s |= m(ga) under an evaluation that maps q 
to X 
sp2aX iff M ,s |= md(ga) under an evaluation that maps 
q to X 
 
Now,  
by structural induction on the complexity of terms,  
sp1DX iff M,s |= m(ga) under an evaluation that maps q 
to X 
sp2DX iff M ,s |= md(ga) under an evaluation that maps 
q to X 
so up1GX but  up1HX 
 
Definition:  Let F* = < S* , R* >  where S*  ={*, y , z}, R*  
= {(*,y), (y,z), (z,z)}then the Kripke model M+ = < S* , 
R* , V+> satisfies all m(G) at its root, *, and V+(q) = 
{*,z} 
while M  = <S, R* , V-> V-(q) =  and V-(pa) = {z} for 
all a, and falsifies all M(G) at * 
The reason for this for example in the case of � (pa 
 q) and M+ is that one can move from * to y and 
then necessarily the only move is to z where q is 
evaluated as true so the conditional holds 
 
The main difficult technical lemma that Goranko 
employs is as follows: 
 
TFAE: 
1)  it is not the case that  G  H 
2) there exists a disjunct k  Ki gik Gik in G such that 
every disjunct in H contains some conjunct hjmi  Hjmi 
not including any of the conjuncts gik Gik for any k 
3) There is a finite Kripke model M and a state s such 
that M, s |= m(G) but that M, s does not satisfy m(H) 
and s has no predecessors in M 

 
Proof of the technical lemma in Goranko8: 

 
1)   2) Assume it is not the case that  G  H then 

wlog let G 1 H, then there is a state s and the 
choice of player one  as some k  Ki gik Gik 
such that every conjunct gik Gik enables him to 
reach some outcome X from s that cannot be 
forced on H, and hence every disjunct in H must 
contain a conjunct which lacks the power for 
player 1 to force an outcome in X, and hence 
none of the terms hjmi  Hjmi can include any of 
the gik Gik 

2)   3) A Kripke model will be constructed which 
will satisfy all {m (gik Gik)} and none of the m(hjmi 

                                                        
8 Goranko, V.F., ‘The basic algebra of game equivalences’, 
Studia Logica, 75:231-232, 2003 
 
 

 Hjmi), M will be rooted at some state s with no 
predecessors 

 
The set of all terms must break up into the following 
subsets: 
TA = {t  D|   A} whose translations must be true 
at s 
TB = {td  D|   B} whose translations must be true 
at s 
T  = {t  D|   } whose translations must be false 
at s 
TB = {td  D|   } whose translations must be false 
at s 
 
so any suitable Kripke model would have to satisfy 
the following sets of formulas 
FA = {�(pm(D))|  A} 
FB  = {�(pm(D))|  B} 
F  = {�(p m(D))|  } 
F  = {�(pm(D))|  } 
 
notice that for  F  = {�(pm(D))|  }  m(td  
D) = m(td)[m(D)/q] and m(td) = (�(p q)) so 
m(td)[m(D)/q] = �(pm(D), the others are 
similar 
 
Constructing the model: 
M = (W,R,V) 
W = {s}  (A  )  (((A  ) x (B  ))  W’ 
 
The index sets form the skeleton of the model and W’ 
will be submodels which will be grafted onto the 
skeleton 
 
R = {(s,x)| x  A  }  {(x, (x,y)| x  A  , y  B 
 }  R’ 
R’ will be the union of the inherited relations from the 
grafted sub models 
 
Induction on term complexity: IH: 
There exists a disjunct k  Ki gik Gik in G such that 
every disjunct in H contains some conjunct hjmi  Hjmi 
not including any of the conjuncts gik Gik for any k 
Then there is a finite Kripke model M and a state s 
such that M,s |= m(G) but that M,s does not satisfy 
m(H) and s has no predecessors in M 
 
1)  Every state (,) for   A,   B must satisfy 

p  m((D)) and (p m(D) so p is set true at 
 and graft M+ at (,) 

2)  Every state (,) ,   A,    must satisfy 
pm(D) and p m(D)  If    we set p 
false and p true at (,) and graft M- at (,); if 
h = h then not  D   D so by IH, there is a 
model M rooted at some u such that M ,u |= 
m(D) but does not satisfy m(D) so set p true 
and graft M  at (,) 
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3)  Every state (,) ,  must satisfy pm(D) and 
p  m(D)  If    we set p false and  p true at 
(,) and graft M+ at (,); if h = h then  not D  D 

so by IH, there is a model M rooted at some u such 
that M,u |= m(D) but does not satisfy m(D) so set 
p true and graft M  at  (,) 
 
4)  Every state (,)   must satisfy pm(D) and 

p m(D), so set p true, p false and graft M- 
 

Venema’s more general and algebraic approach9 to 
Van Benthem’s first question on game axiomatics: 
 
Venema defines game algebras and board algebras. 
Game algebras satisfy the Van Benthem Axioms. 
Board algebras are defined via outcome relations. An 
outcome relation being a relation positions and sets of 
positions to capture that a player in a certain position 
has a strategy to force play into a certain set of 
positions. Venema then shows that every game 
algebra is isomorphic to a board algebra, analogous 
to the Stone Representation theorem. Venema’s 
approach seems slightly more sophisticated. 
 
Definition: A game algebra, (G,, ,d,) is a model 
satisfying Van Benthem’s axioms 
Definition: For Outcome relation Rig  p Rig T holds if in 
position p, i can force that the outcome of the game g 
will be a position in T 
Monotonicity: If p Rig T and T  U then p Rig U 
Consistency: If p Rig T then not I p R1-ig (B - T) [B = 
set of all positions] 
 
Outcome Relations for games defined through 
game operations: 
Not: g i h is the game in which the first move is that 
player i chooses to play g or h 
1)  p Rig i h  T iff p Rig T or If p Rih T 
2)  p Rig 1-i h T iff p Rig T and If p Rih T 
3)  p Ri-g T iff If p R1-ig T 
4)  p Ri g  h T iff p Rig U for some U such that for all u 

in U,  u Rig T 
 
Board Algebras: 
Definition: O(B) =  P(B x P(B)) denotes the set of 
outcome relations on B 
Om(B) = set of monotone outcome relations 
G(B) = set of all pairs of outcome relations 
Gm(B) = set of all pairs of outcome relations 
Gmc(B) = set of all consistent pairs of monotone 
outcome relations 
 
Definition: Binary operation  on outcome relations 
R  S = {(p,T) | p R U for some U such that u S T for 
all u in U} 
                                                        
9 Yde Venema, Representation of Game Algebras, Studia 
Logica 75:239-256, 2003 

Operations on G(B): 
      1)  (R1, R2)  (S1, S2) =  ( R1  S1, R2  S2) 
 
Note: the reason for this definition is that the second 
outcome relation in the ordered pair of outcome 
relations is referring to the ability of what player 2 can 
force so that the second outcome relation must be 
weakened if the first is strengthened 

2)  (R1, R2)  (S1, S2) =  ( R1  S1, R2  S2) 
3)  (R1, R2) d = (R2, R1) 
4)  (R1, R2) � (S1, S2) = ( R1  S1, R2  S2) 

 
An outcome algebra of the form (A, , , d, � ) 
where A  Gmc(B) is a board algebra 
Theorem(Venema) Every game algebra is isomorphic 
to a board algebra10 
Sketch:   The lattice reduct  (G, , ) is any algebra 
satisfying 
      x  x = x 
      x  y = y  x 
      x  (y  z) = (x  y)  z 
      x  (x  y) = x 
      x  (y  z) = (x  y)  (x  z) 
 
The first five of Van Benthem’s axioms and such an 
algebra is isomorphic to a set lattice over the 
collection of the prime filters of G, denoted by BG. 
Basically, something similar to BG will serve as the 
underlying set of the board algebra representing G 
 
Definition: A deMorgan reduct (G,, ,d) of a game 
algebra satisfies the above five axioms and also  
 
xdd = x 
(x  y)d = xd  yd  
 
Definition: A module over game algebra G is an 
algebra  =  (M, , , d, g) g  G such that (M, , 
, d,) is a de Morgan algebra and (g) g  G is a 
family of unary monotone operations on M satisfying 
the following: 
1)  gh x = g x  hx 
2)  gh x = g x hx 
3)  gh x  = g (hx) 
4)  (gd ) x =  (g  xd)d 
 
To obtain a module over a game algebra,  
use g x = g  x 
Definition: A game module is separable if for all 
distinct elements g and h of G there is an x  M such 
that g x   h x 
The theorem is proved via the following three steps: 
 

                                                        
10 Yde Venema, Representation of Game Algebras, Studia 
Logica 75:244 , 2003 



Games in logic, logic in games, and meta games 

12 
Journal of Statistics and Mathematics 

ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 2, Issue 1, 2011 

1)  Every game algebra seen as a module over itself 
can be embedded in a separable module over 
itself. 

2)  If M is a separable module over G then G is 
isomorphic to some monotone outcome algebra 
over M 

3)  Any monotone outcome algebra can be 
embedded in a board algebra 

Notation: Given a distributive lattice D, then a ^ = {p| 
a  p} where p must be a prime filter 
There will be an association between every operation 
of the form  g x and a monotone outcome relation Q g   

( to simplify notation, we write Q g  as opposed to Q  
g )on the set of prime filters of M 
Main Technical Lemma: Let (M, , , d, g) g  G be 
a module over game algebra G and let g and h be 
elements of G, then 
 
We have 
Qg h = Qg  Qh 
Qgh = Qg Qh 
Qg h = Qg  Qh 
if  g x   h x for some x  then Qg  Qh 
 
Proof: The proof makes use of prime filters so first 
some background: 
Let D = (D, , ) be a distributive lattice. A filter is a 
subset F of D which is upward closed and closed 
under meets 
A filter is prime when a  b  F  a  F   or  b  F 
Let BD  denote the set of prime filters of D 
Also, given any set of prime filters T let FT denote the 
set of elements a of D such that for all p in T, a  p 
Venema will define an important outcome relation on 
the board of prime filters of D by in the following way: 
Given a monotone lattice expansion  (D, , , ) 
(where  is a monotone relation on the distributive 
lattice) let Q be the outcome relation on the board of 
prime filters of D given by p Q T iff  a  p for all a in 
FT (Note that  a is not a  which denotes a function 
where the former denotes the value of a function) 
 
Observation: p Q a^ iff a  p ( the first direction is 
trivial, for the backwards direction, suppose that a  
p  and let b  Fa^ so we know a^  b^ and so a  b 
and by monotonicity and the proper of filters being 
upwards closed, the result follows) 
 
Lemma:  
p Q  a  A a^ iff a  p for all a  A 
 
Now to see how the  proof of the technical lemma will 
go: 
Let p be an arbitrary prime filter and T an arbitrary set 
of prime filters  
case 1) T = a^ for some a 
 

case 2) T is an arbitrary set 
for case 1):  pQg  h T iff gh a   p iff ga  ha  p iff 
(since p is prime) ga  p or ha  p iff pQg a^ or pQh 

a^ iff p(Qg   Qh) a^ 
 
case 2): pQg  h T then gh a   p for all a in FT, so by 
the proof of the first case for all a  FT, ga  p or ha 
 p. We claim p Qg T or p Qh T, for deny toward a 
contradiction, then there exist bg, bh,  FT such that g 
bg p and h bhp ; now define b = bg  bh, and since 
b bg we have g b p by monotonicity  of  g and 
upward closure of prime filters but then gh b  p, a 
contradiction; for the backward direction, assume 
p(QgQh) T so pQg T or pQhT WLOG, pQg T, then 
given any a  FT , g a  p and hence  g  h a  p 
since g  h a   g a 
 
The other cases in the technical theorem are similar 
Van Benthem also discusses imperfect information 
games. Here, players do not have perfect recall as to 
what as to what moves have been played. Knowledge 
operators are added to a simple modal language to 
reason about the game. Van Benthem points out that 
a player V may know that de dicto she has a winning 
strategy but not de re. Note that in general a modal 
sentence  is de re if there exists some formula  that 
occurs in  which consists of a modal operator 
followed a formula containing either a variable free in 
 or an individual constant. For example, �x(Fx  
Gx) is de dicto while xGx is de re.  

 
In an example of an imperfect information game, F 
has a choice to play c or d and V has a choice to play 
a or b. If F plays c then V’s play of a results in win 
and a play of b results in a loss but if F plays d, V’s 
play of a results in a loss and V’s play of b results in a 
win. 
KV(<a> win  <b>win) 
(this notation comes from Parikh11) “ K knows a wins 
or b wins “so that V knows de dicto that she has a 
winning move however not de re for  KV<a> win  
 KV<b> “K does not know that a is winning and K 
does not know that b is winning” 
However, it seems that it is also possible to consider 
games where the moves are known but the strategies 
or the thinking of the opponent is not. 
Van Benthem also discusses bisumulations between 
game models. A game model (S,{Eg| g  },V) 
corresponds to a Kripke model K = (S, {Rg| g  },V) 
where we define s Eg X iff there exists t  X such that 
s Eg t and there is a standard sematic definition of 
<g> “player 1 has a -strategy in g by K,s|= <g> iff 
there is some t in S such that s Rg t and K,t|= 12 
                                                        
11 Rohit Parikh, The Logic of Games and its Applications, 
Annals of Discrete Mathematics(1985) 111-140 
12 Marc Pauly and Rohit Parikh, Game Logic- An Overview, 
Studia Logica 75:165-182 
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Definition: (Bisumulation): Given game models M = 
(S,{Eg| g  },V) and M’ = (S’,{E’g| g  },V) then  
 S x S’ is a bisumulation between M and M’ iff for 
any s   s’ we have that  

1)  s  V(p) iff s’  V’(p) for all p   
2)  for all g   and X  S: If s Eg X then  X’ 

 S’ such that s’ Eg X’ and x’  X’  x  
X : x  x’ 

3)  for all g   and X’  S’: If s’ E’g X’ then  
X  S such that s Eg X and x  X  x’  
X’ : x  x’13 

 
Response to Van Benthem’s Second Question: 
 
1 Necessitation for a  way to classify strategies 
2 Higher Order Modal Logic to make sense of the 
classification 
3 Necessitation for a way to classify the thinking of 
players 

 
Note: Games are more complicated than the Van 
Benthem axiomatization. Players  are intelligent 
agents who have knowledge that they are in a game 
and realize that  there are strategies for the game, 
and they are aware that the opponent may be playing 
according to some strategy. Hence, they may make 
moves to induce the other player to employ a strategy 
against a perceived strategy (this means that the first 
player is playing a meta strategy. In this sense, 
strategies are no longer simply only functions on Xw 
X).  
It seems apparent to me that the dynamic aspect of a 
game Van Benthem alludes relates to the interaction 
between intelligent agents who are aware of the game 
being played and various possible strategies for 
playing the game, agents who have a metalevel view 
of the game and can plan strategies based on their 
perceived understanding of the reasoning of their 
opponent. 
For example, in a famous example of military 
strategy, Player I (the Allies) places military 
equipment close to Calais so that Player II (the 
Germans) will think an attack is coming there and not 
at Normandy. How does player II (the Germans) 
respond? Player II may react in just such a manner. 
Or perhaps player II reasons that player I wants them 
to think an attack is coming to Calais and so the real 
attack is coming to Normandy, or perhaps player II 
reasons that player I wants them to think that the real 
attack is coming to Normandy because they believe 
that player I has anticipated that player II will see 
player one’s play of the game as a ruse to invoke a 
response from player II to protect Normandy when 
indeed the actual attack is coming to Calais. 
However, maybe player I reasoned that Player II 
                                                        
13 Marc Pauly and Rohit Parikh, Game Logic- An Overview, 
Studia Logica 75:165-182 

would think exactly this way, and so player I is indeed 
planning to attack Normandy, and such nesting of 
strategic reasoning can go on ad infinitum. Poker is 
another game where a strategy may be employed by 
one player which includes consideration of the 
opponents ability to interpret what strategy is actually 
being indicated by a particular move. 

 
Classification of intent of players in a game to which 
there is no clear winning strategy other than to 
anticipate the opponents move as in the first example:  
Meta-Level    0)  at the er level, player II reacts to the 
moves of player I and playes move m according to a 
strategy which does not anticipate the thinking of 
player I. This is a 0-level reason for making move m. 
Meta-Level   1) A player reacts to the moves of the 
other player by considering a response at level 0 as 
part of the reasoning process of the other player and 
makes a move m to thwart the other player 
Meta-Level   2) A player reacts to the moves of the 
other player by considering a response at level 1 as 
part of the reasoning process of the other player 

, 
. 
. 
., 

Meta-Level i + 1) In general, a player reacts to the 
moves of the other player by considering a response 
at level i as part of the reasoning process of the other 
player 
Here we might refer to a strategy with intent of 
influencing or interpreting an opponents thinking as < 
 , , p,   > where  and  are functions X<w  X 
and  = | n for some n and p  is a current position 
and   is a k-metalevel reason for provoking a move 
m at stage n + 1 of the game, where   is winning 
strategy for p ^m. 
Or imagine a game of chess in which a winning 
strategy is either not clear to either player or where 
the game can only be drawn with perfect play but 
player one knows that player II has a predilection to 
interpret a particular move as a perceived strategy in 
such a way that there is a alternate strategy following 
the expected response from II that is indeed winning. 
Hence, it is apparent there needs to be a 
classification of strategies. Which strategies are 
devised on the basis of a feigned strategy in position 
s? And which sets of strategies are devised on the 
basis of a feigned strategy from some position, 
necessitating properties of properties of strategy.  We 
need to also know from which positions are such 
properties of properties of strategies possible, so a 
third order modal logic or even higher order modal 
logic is needed. 

 
Classification of Strategies: 
How can we classify strategies using higher order 
modal logics? 
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1) Strategies can be classified at the er level as 
winning or losing for a certain player, and a pair of 
strategies could for example be classified at the er 
level as being equivalent at some finite stage of play 
2)  A strategy may have the property that it will 
provide player 1 with a move such that there exists a 
strategy which player II will adopt with high probability 
following such a move by player 1 such that there 
exists a strategy winning for I and such that this 
strategy is equivalent at some finite stage to the 
adopted strategy by I. This is easily expressible in a 
second order modal logic. 
3) Properties of strategies can be classified as 
belonging to the same property of properties if the 
manner of classification in 2) is similar for example, 
and this is expressible in a third order modal logic. 

 
Example: Given  and  as strategies,    R  P  
[R(P)  P(,)] is the third order modal logic 
statement that expresses the notion that from the 
current game position it is possible to move in such a 
way that there is a property of relations R and binary 
relation of strategies P such that P has property R 
and  and  belong to P.  
In Godel’s Ontological Argument14 I developed the 
formal syntax of Third Order Modal Logic with a 
property abstraction operator and proved a  
Completeness Theorem of third order modal logic for 
faithful models: A completeness theorem for third 
order modal logic useful in the setting of games and 
strategies could be adaptable from this more general 
completeness theorem for third order modal logic. 
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