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Abstract- Based on Hoff and Arbib’ s control theory of the minimum jerk, this paper presents a new control model with cerebellar-like struc-
ture which can account for the temporal coordination of arm transport and hand preshape during reach and grasp tasks. And it has also be 
suggested that how the structure could learn two key functions required in the Hoff-Arbib theory, namely state look-ahead and TTG (time-to-
go) estimation. The simulation results demonstrate that whether it is in a d or 2 d space, by training and learning, the model can obtain the 
accurate smooth motor trajectory. 
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Introduction 
Constructing arm transport balanced control model is an important 
subject of investigating robotics and control science. In the paper 
[1], we have set up a cerebellum control model for directional 
movement of arm and supposed that kinematic plan for the move-
ment is generated in premotor cortex. The trajectories of arm 
transport were generated in a feed-forward way, i.e., not taking into 
account the actual position of the hand other than at movement 
initiation. It is well established that human reaching trajectories in 
simple movements are smooth with a typical bell-shaped tangential 
velocity profile, but it has been shown that trajectory generation is 
in part a feedback process where both the position of the hand and 
target are constantly monitored. 
However, arm control itself is just as a means of using arms to 
grasp the target in the various tasks, not a purpose. We are inter-
ested in the issue of temporal coordination between the form of 
arm transport and hand’s preshape during of reach and grasp 
tasks. If the task is to grasp an object, the hand is preshaped ap-
propriately to be slightly larger than the size of the object during the 
transport phase. Hand shape, or to simplify, aperture size, is tem-

porally coordinated with arm transport so that the hand attains 
maximum aperture approximately 200ms before the target is 
reached, followed by an enclose phase that is timed so that the 
aperture matches the object size when transport terminates. 
It should be noted that grasp is a very complex process. Only 
grasp modes, there are more than eight species [2], such as power 
grasp, cylindric grasp, hook grip, span grip etc.. S. A. Stansfield 
had defined three grasp modes which is called pre-grasp shape of 
the hand directing at their robot system [3], namely wrap, grip and 
pinch. The paper discusses not specific grasp mode but grasping 
process based on mode defined by S. A. Stansfield. 
Hoff and Arbib developed a control theoretic model [4], based on 
the minimum jerk optimality criteria, that accounts well for the kine-
matics of hand transport and preshape under a variety of condi-
tions, including perturbations in object position and size. A critical 
part of the model was a state look-ahead unit, needed to compen-
sate for long efferent and afferent delays. We show that the cere-
bellum, by virtue of its structure and connectivity in the motor sys-
tem, is uniquely suited to learn this function. 
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In the paper, we will show how the cerebellar module, here sug-
gested to represent a part of the lateral cerebellum, can learn a 
forward model of the system it is embedded in. A forward model 
takes as inputs the control inputs to a system and predicts the fu-
ture system state. Here we show how the lateral cerebellum could 
use collaterals of descending motor commands (combined with a 
delayed sensed state of the arm and hand) to provide predictions 
of the future state of the arm and hand to premotor areas, thereby 
allowing the accurate evolution of smooth, accurate kinematic tra-
jectories. 

 
Hoff-Arbib Model 
As shown in Figure 1 (A), coordination between reach and grasp in 
the Hoff-Arbib model is achieved by determining the time needed 
for each of the aperture and transport controllers to reach its goal, 
then setting the duration input to the controllers to the maximum of 
the two values. The controllers had the form shown in Figure 1 (B). 
The control law for the arm, 

 （1） 
with x location, D the time-to-go, t was designed to produce mini-
mum jerk trajectories. 

A 

B 
Fig.1- Schematic of the Hoff-Arbib model 

However, the model described by Equation（1） assumes that 

the system state can be measured without delay. In a realistic sim-
ulation of the nervous system, the long delays have to be taken into 
account and required a look-ahead unit (or state estimator) as 
shown in Figure 6.lB. to provide updated state information. 
 
Model Constructing 
As shown in Figure 2, we have preserved most of the Hoff-Arbib 
model, with the addition of the cerebellar modules to learn forward 
models of the controlled plants and provide time-to-go (TTG) esti-

mates. The reason for complicating the basic Hoff-Arbib model is 
that biological systems have to deal with significant afferent and 
efferent delays. In Hoff and Arbib’ model , this problem was solved 
using an analytical forward model of the system. Here we show 
how the cerebellar module could acquire such a model through 
training. 
Two models were implemented: in the first (Model 1), to simplify, 
both the transport and grasp aperture are represented by scalar 
numbers corresponding to distance moved and aperture size re-
spectively. The second implementation (Model 2) extended the first 
by replacing the scalar distance representation of the transport 
phase with the two-joint planar arm described in the paper [1], that 
is transfer one-dimensional distance training to multi-dimensional 
movement (direction and distance) training in Cartesian space, 
thereby increasing evaluation standard towards system complexity 
and practicality. 

Fig.2- schematic of new model of temporal coordination of reach 
and grasp 

Construction of Cerebellar Module 
For this model we used the abstract cerebellar module as de-
scribed in the paper [5]. Although a single module, sharing all the 
inputs, was used for both models, the outputs were grouped into 
subsystems. For Model 1 the subsystems comprised the grasp 
system and the (scalar) distance system. For Model 2 the distance 
system was broken up into separate shoulder and elbow systems, 
to give three subsystems. 
The subsystems have two outputs each to predict the current state 
(position and velocity). It is assumed that an estimate of accelera-
tion can be determined from the motor command signal. Two fur-
ther outputs are trained to be contact anticipation signals, and 
could also be interpreted as TTG estimates. Both Model 1 and 
Model 2 used only one TTG output for each of the grasp and 
transport systems. 
For Model 1 the state estimates were directly used in Equation (1) 
to determine the "motor command" for each subsystem. For Model 
2, however, the outputs were estimates of the arm state in joint 
space (to be consistent with the inputs available to the inferior ol-
ive), while trajectories are planned in Cartesian space. In order to 
allow the planning to proceed in Cartesian space, the joint-space 
estimates were converted to Cartesian state estimates and updat-
ed for a virtual wrist position using Equation (1). And from this virtu-
al position the new desired joint state was computed. For this mod-
el we used a simple feedback controller to generate joint torques 
for the arm. 
Modern biology suggests that parietal cortex is concerned with the 
visual, guidance of hand movement, especially in matching move-

2 39 / 36 / 60( ) /u x D x D t x D    

Journal of Pattern Intelligence  
ISSN: 2230–9330 & E-ISSN: 2230–9349, Volume 2, Issue 1, 2012 

Cerebellar Control Model Design For The Temporal Coordination Of Arm Transport And Hand Preshape. 



Bioinfo Publications   10 

 

ments to the spatial characteristics of the object. Cortical areas 
project to the cerebellar cortex via the pontine nucleus. The cortex 
receives information about the current state of the limb via the cu-
neocerebellar tract. 

In the model， the cerebellar module receives 5 population coded 

inputs as mossy fiber afferents from each subsystem. Four inputs 
correspond to the delayed state (position, velocity, acceleration) 
representing spinal afferents, plus an input equal to the difference 
between the target value and current position, which could be seen 
as originating in the posterior parietal cortex. Additionally, the mod-
ule receives an efference copy of the current motor command. 
Lastly, the module received the previous TTG prediction, again one 
each for the grasp and transport systems. 

Mossy fibers were modeled as a  array, with each row vec-
tor of the array coding a specific input variable --each element in 
the vector tuned to a different value for the variable to form the 

population coding. The activity, , of element i in such a row 
vector was determined as: 

    （2） 

With 

       （3） 

      （4） 

where x is the value to be coded, and  and  are 
parameters to determine the range of the variable. 
As described in the paper [5], randomly selected mossy fibers and 
one Golgi cell synapse with granule cells, modeled as leaky inte-
grators with real-valued output computed as a sigmoidal function of 
the membrane potential to represent the instantaneous firing rate of 
the cell. The numbers were empirically found by using increasing 
numbers until performance no longer improved. The granule cell 

membrane potential was defined as: 

    （5） 

 
where M is the set of four mossy fibers, randomly selected for each 

granule cell; time constant =1.33ms; and = .5. Granule 
cell firing rate was computed as 

                 （6） 

The mossy fiber weight, , was updated using a local learning 
rule to maximize information transfer 

  (7) 
Where 

                (8) 

   (9) 
Golgi cell activity was defined simply as the sum of the granule cell 
activities: 

               (10) 
A single linear Purkinje cell was used for each output. Each 
Purkinje cell received input from all the granule cells via the parallel 

fibers, with connection weights, updated during training as 
described below. Purkinje cell firing was computed as 

              (11) 
Nuclear cells receive excitation from mossy fiber collaterals and 
inhibition from Purkinje cells. Each Purkinje cell was paired with a 
single linear nuclear cell. The cells computing predicted state varia-
bles received the corresponding delayed state variable as mossy 
fiber input, while the cell computing the TTG signal received only 
constant background activity: 

                  (12) 

Where,  is the delayed state variables that the specific nu-
clear cell is learning to predict. 
Inferior olive cells were paired with nuclear cells. Each received 
excitatory sensory input (a delayed version of the variable coded by 
the nuclear cell) combined with inhibition from the nuclear cells, 
allowing them to act as error detectors for state prediction. To align 
the prediction (nuclear cell output) with the delayed sensed value, 
the cerebellar inhibition was also delayed by 60ms (see also the 
paper [1]). 
An exact match is not required, but the duration of this delay deter-
mines the time offset of the prediction, i.e., how far ahead the mod-
ule predicts. Such long latency responses have been experimental-
ly confirmed, although the effect of the nucleo-olivary pathway is 
not quite as simple. 

         (13) 

where once again is the delayed state variable. 
 
3.2 Learning Rule 
The model applies learning rules that described in the paper[5] to 
update he parallel fiber-Purkinje cell weights: 

         (14) 

with a small constant, IO the climbing fiber (inferior olive) ac-
tivity, and e(t), the eligibility trace postulated to exhibit second order 
dynamics as described in the paper[5], defined by 
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                          (15) 

                                  (16) 

Where GC is the activity of Granule cell, time constant 
=0.0625. 

The dynamics of the differential equations smooth out the gran-
ule cell input and once again do not have to match the delays 
exactly. 
 
Grasp Processing Module 
Hoff and Arbib determined that the maximum aperture was relat-
ed to the size of the object s by =0 .75s +0 .4 and that the time of 
maximum aperture was coordinated with the transport phase so 
that the enclose time was approximately a constant 200ms [4]. 
Based on this data, the grasp-phase module was implemented 
as a single decision box that took as input the estimated TTG for 
the transport controller and set the target for the hand controller 
to if the input was greater than 200ms, s otherwise. 
 
Model 1 Training Result 
The model was exercised in two modes: training and evaluation. 
During training mode a total of 2000 normal reach and grasp 
movements were made where both the target size and move-
ment duration were selected randomly in the ranges 5-10cm and 
0.25-0.5s respectively. Computing the TTG for normal move-
ments is trivial and could be used to train the TTG estimators. 
Simulated movements made with an "untrained cerebellum" 
exhibit oscillations and overshoot due to the inaccurate state 
estimations sent to the feedback controller. In the absence of a 
TTG signal, the transport and preshape controllers run inde-
pendently with no guarantee of cotermination. While this bears 
some resemblance to deficits caused by cerebellar lesions, it has 
been suggested (Thach, 1996c) that cerebellar patients will also 
consciously change strategy to compensate for the lack of coor-
dination, e.g. by slowing down and excessive opening of the 
hand. 
After training the accuracy of the model was evaluated by com-
paring its outputs to human performance for two perturbation 
experiments [6,7]: in the first experiment the distance to the ob-
ject is unexpectedly increased; in the second the object size 
increases during the reach. 
 
The Training Process 
Training process showed in Fig 3. Each figure shows five differ-
ent speed trajectories. The left column is before learning, the 
right is the performance after learning. Note that delayed state 
feedback is how to cause overshoot and ringing. 
 
Training Results 
Figure 4 shows that simulation of non-disturbance transport and 
grasp process. A and B are result of simulation. Of which, A is 
transport position and vector, B is aperture size and velocity. C, 

D, E are human date [6, 7] based on Hoff-Arbib model that 
Paulignan provided. Of which, C is distance, D is velocity, E is 
aperture size. Both movement and aperture size are smooth and 
timed to coterminate.  
During the location perturbation experiment, subjects exhibit a 
distinctive second bump in the transport velocity profile. Also, the 
hand interrupts the enclose phase and again opens up before 
following a normal enclose trajectory when the target is eventual-
ly reached. As seen in Figure5, the model faithfully reproduced 
the human data. The line above is the simulation results, the 
following line is human dates that given by Paulignan [6, 7]. 

A. Transport position 

B. Transport velocity 

C. Aperture size 

D. Angular velocity 
Fig.3- Training process schematic of model 1 
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A 

B 

 
C 

 
D 

 
E 

Fig.4- Simulation of A normal undisturbance reach and grasp 
Human and model performance for the size-perturbation experi-
ment is shown in Figure 6. What is interesting to note here is 

that the arm transport slows down in order to give the hand time 
to preshape appropriately. 
The estimated TTG signals during the perturbation experiments 
are shown in Figure 7. When the distance is suddenly increased, 
the estimated TTG for the transport controller increases accord-
ingly, which puts the hand back in preshape mode. This then 
increases the TTG estimate for the hand also and ensures tem-
poral coordination. 
During the size perturbation experiment, the increase in object 
size leads to an increase in the hand TTG estimate. Because the 
transport TTG estimator receives as input the maximum of the 
two TTG signals, it now increases the estimate of the transport 
TTG. 

A 

B 

C 

D 
Fig.5- Location disturbance experiments 
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Training on the Model 2 
Model 1 used a trivial "plant" model for the arm (just using ) , and 
could only be used to simulate movements as a one-dimensional 
distance from the starting point. Model 2 integrated the system 
with a more interesting arm (see the paper [1]) and could be used 
to test the model in a more challenging environment. We have 
done some work in this aspect, training with good results. But due 
to space constraints, we are prepared for another paper devoted 
to it. 

A 

B 

C 

D 
Fig.6- Perturbation experiments of the object size 

A Position variation 

B size variation 
Fig.7- Experimental disturbance remaining time (TTG) assess-

ment 
 

Conclusion 
This paper presents a new control model with cerebellar-like 
structure, and it has also be suggested that how the structure 
could learn two key functions required in the Hoff-Arbib theory, 
namely state look-ahead and TTG (time-to-go) estimation. The 
model makes two separate predictions methods:  
The fast prediction method. This method applies lateral cerebel-
lum learning the forward model of the limb being controlled to 
construct a finite time state look-ahead predictor. It does this by 
monitoring delayed spinal feedback and provides this updated 
expectation to the premotor cortex where it is used for trajectory 
generation. In contrast to the Smith Predictor, we don't posit the 
cerebellar forward model to be part of a feedback loop for control. 
The cerebellum helps the temporal coordination of multi-joint 
movements by providing an estimate of time-to-contact. Modern 
biology think that cerebellar patients will have difficulty to estimate 
time intervals involved in reaching for objects, or making contact 
with moving stimuli. The general lack of coordination of multi-joint 
movements seen in cerebellar patient are the result of a basic 
deficit in timing computation rather than motor control. The model 
can complete multi-joint movement temporal coordination task 
better by simulating cerebellar related function. Note thought that 
what is needed is not a metronome clock signal. We only need a 
system that can generate an internal "trajectory" to predict the 
onset of a sensory event. 
The problems of the model need to be resolved or further re-
search are so many, mainly in: 
The current learning scheme needs a somewhat artificial TTG 
signal during training to bootstrap the process. A more plausible 
alternative might be to use some form of temporal difference 
algorithm. 
Models using internal cerebellar circuitry for timing are notoriously 
sensitive to sensor noise [8]. While our system bases its timing 
estimates on external variables such as the observed state of the 
limb and should therefore not suffer from deficits such as diverg-
ing population vector trajectories, noise is a topic deserving of 
further study. 
We have only looked at the very basic transport and aperture 
coordination. A next step would be to look at incorporating other 
aspects such as the speed-accuracy trade-off and the adaptation 
of the final wrist position based on the affordances for rasping 
offered by the target object. 

 
Acknowledgements 
We would like to thank reviewers for their helpful comments on 

Cerebellar Control Model Design For The Temporal Coordination Of Arm Transport And Hand Preshape. 

Journal of Pattern Intelligence  
ISSN: 2230–9330 & E-ISSN: 2230–9349, Volume 2, Issue 1, 2012 



Bioinfo Publications   14 

 

the manuscript.  
Funding: The work is supported by the National Natural Science 

Foundation of China (No.61073115，No. 61173079) 

Conflict of interest: none 
 
References 
[1] Ruan X.G., Zhang S.B. (2007) Chinese Journal of Electronics, 

35, (5), 991-995 
[2] Xiong Y.L., Xiong C.H. (2004) Huazhong Univ. of Sci. and 

Tech. (Natural Science),32 (9), 5-10. 
[3] Townsend.B.R., Subasi E. (2011) The Journal of Neurosci-

ence,31 (40),14386-14389,Doi:10.1523 /Jne- urosci. 2451-11. 
[4] Hoff.B., Arbib M.A.(1993) Journal of Motor Behavior, 25(3),175-

192. 
[5] Zhang S.B., Ruan X.G. (2012) Journal of Nanjing University of 

Posts and Telecommunications(Natural Science), 42 (2),18-22. 
[6] Paulignan.Y., McKenzie C., Marteniuk.R. (2006) Experimental 

Brain Research, 83,502-512. 
[7] Paulignan.Y., McKenzie C., Marteniuk.R. (2006) Experimental 

Brain Research, 87,407-420. 
[8] Kawato M., Kuroda S., Schweighofer N. (2011) The Cerebel-

lum, Doi: 10.1007/ s12311- 010-0241 -2. 

Zhang Shao-Bai, Zhou Ning-Ning and Feng Zhi-Quan 

Journal of Pattern Intelligence  
ISSN: 2230–9330 & E-ISSN: 2230–9349, Volume 2, Issue 1, 2012 


