

GENOME WIDE ANALYSIS OF DISEASE RESISTANCE *MLO* GENE FAMILY IN SORGHUM [Sorghum bicolor (L.) MOENCH]

SINGH V.K.¹, SINGH A.K.², CHAND R.³ AND SINGH B.D.^{4*}

¹Centre for Bioinformatics, Faculty of Science, Banaras Hindu University, Varanasi- 221 005, UP, India ²Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi- 221 005, UP, India ³Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi- 221 005, UP, India ⁴School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi- 221 005, UP, India *Corresponding Author: Email- brahmadsingh@gmail.com

Received: June 12, 2012; Accepted: July 18, 2012

Abstract- Powdery mildew of sorghum (*Erysiphe pisi* var. *pisi*) is of worldwide occurrence and causes substantial yield losses. As far as resistance against powdery mildew is concerned, the presence of powdery mildew-resistance gene O (Mlo) plays a key role. The *Mlo* gene was first identified in barley, and the Mlo protein was found to be an integral plasma membrane-localized protein that possesses seven transmembrane regions. In the present work a total of 12 well reported *Mlo* genes from *Oryza sativa*, 15 well characterized *Mlo* genes from *Arabidopsis thaliana* genome were taken for comparative studies in sorghum (*Sorghum bicolor*). Comparative analysis of Mlo proteins from *S. bicolor* genome revealed the presence of 13 hypothetical genes within the genome. Map viewer analysis indicates that the predicted *S. bicolor SbMlo* genes are distributed on eight of the ten chromosomes. Sorghum chromosome 9 has 3 genes; chromosome 10 and chromosome 1 have 2 genes each, while chromosomes 2, 3, 4 and 5 have 1 gene each. Sub-cellular localization of identified Mlo proteins encoded by genes *SbMlo1, SbMlo2, SbMlo4, SbMlo5, SbMlo6, SbMlo9, SbMlo10, SbMlo11, SbMlo12* and *SbMlo13* are present in plasma membrane; *SbMlo3* product is located in endoplasmic reticulum, *SbMlo7*encoded protein is located in vacuolar membrane and *SbMlo8* product is present in the nuclear region. *In silico* characterization (using phylogenetic classification, motif analysis and *cis*-acting elements studies) suggested its diverse function associated with disease resistance based on specific expression containing fungal elicitor responsive elements. Gene specific primers, expression primers and universal primer were designed to check the expression and availability of *SbMlo* genes through wet lab experimentation.

Keywords- Mildew resistance, Sorghum bicolor, comparative analysis, SbMlo, disease resistance, powdery mildew resistance

Citation: Singh V.K., et al. (2012) Genome Wide Analysis of Disease Resistance MLO Gene Family in Sorghum [Sorghum bicolor (L.) Moench]. Journal of Plant Genomics, ISSN: 0976-8823 & E-ISSN: 0976-8831, Volume 2, Issue 1, pp.-18-27.

Copyright: Copyright©2012 Singh V.K., et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Introduction

The powdery mildew disease in cereals is caused by an obligate biotrophic ascomycete fungus belonging to order Erysiphales. The *Mlo* (powdery-*mild*ew-resistance gene *o*) gene was first identified in barley [6] and it constituted the largest family of seven-transmembrane (7TM) domain proteins found in both monocot and dicot plants [12]. Many Mlo homologs have been identified in various plants; for example, thale cress (*Arabidopsis thaliana*) and rice (*Oryza sativa*), whose full genome sequences are available, contain 15 *AtMlo* [11] and 12 *OsMlo* [22] genes, respectively.

Similarly, multiple *MIo* genes have been identified in othe species, *e.g.*, 17 *VvMIos* in grapes [16], 7 *TaMIos* in wheat [21], 2 *BrMIos* in brassica [25], 2 *LjMIos* in lotus [25], 2 *CaMIos* in capsicum [25], and 3 *LeMIo* in tomato [25]. *MIo* gene family members are reported to play crucial roles in modulating defense responses and cell death [19,25,26,38].

Cereals and millets belong to family Poaceae and provide most of our calorie and protein requirements [35]. Disease resistance gene cluster synteny and genome wide gene family study can give a better understanding of the gene organization at genome level, which may facilitate genetic improvement of crops. *Sorghum* is the fifth most important 'cereal' crop in the world based on total grain production [15]. *Sorghum* has a relatively small genome (750 Mbp) and it has diverged from maize and rice; this would greatly aid the discovery and analysis of disease resistance genes through comparative genomics. *Sorghum* is a C4 plant that exhibits drought tolerance, stalk reserve retention capacity and potential to produce more grain per unit photosynthetic area [24]. Expression of *Mlo* genes can be affected by biotic and abiotic stimuli and the inducibility of *Mlo* expression under a range of conditions suggested a broad role of *Mlo* genes [26]. Identification of *Mlo* genes in other crops would be helpful in understanding the evolution and functional divergence at this locus, and it would also contribute to breeding of powdery mildew resistant cereal varieties.

This paper reports genome wide *in silico* identification of putative *SbMIo* gene family of *S. bicolor* (L.) Moench using the recently available whole genome shotgun sequence of *Sorghum* for annotation, chromosomal localization, gene organization and phylogenetic tree inferences based on function motifs. Further, comparative phylogeny of *O. sativa, A. thaliana* and *Sorghum MIo* gene families has been attempted, and the putative functions of the predicted *SbMIo* genes were investigated by analyzing the *cis*-regulatory elements and transcription factors associated with these genes in the promoter and transcribed regions.

Materials and methods

Database Search for the Identification of *MLO* Gene Family Members in *S. bicolor*

The Arabidopsis (A. thaliana) genome contains 15 Mlo genes [7] designated as AtMlos [11]. The Rice (O. sativa) genome contains 12 genes encoding homologs of Mlo protein; these genes were designated as OsMlos [29]. Based on the information provided by Chen et al. (2006), the Arabidopsis Mlo sequences were retrieved from TAIR web site (http://www.arabidopsis.org/) and reported rice Mlos genes were retrieved from NCBI database [27]. The retrieved sequences were subjected to homology search with the available sequence information at NCBI database using BLASTn, BLASTx and tBLASTx [1,2] tools. Upstream and downstream sequences of MIo domain homologs were retrieved from the whole genome shotgun sequence of S. bicolor for fishing out putative SbMlo genes. The annotated sequences were further subjected to bioinformatics tools and software, namely, FGENESH [30] for prediction of full length genes with putative full CDS and protein sequences.

Mapping of *Sbmlo* Genes on *Sorghum* Chromosomes and Determination of Intron/Exon Boundaries

Each of the *SbMIo* genes was positioned on *Sorghum* chromosomes by the BLASTn search with NCBI genomes (chromosome) database. The structures of predicted *SbMIo* genes were determined using FGENESH server and intron/exon boundaries were manually identified.

Sub-Cellular Localization and Trans-membrane Helix Prediction

The putative MIo protein sequences of *S. bicolor* were subjected to protein functional analysis using PFAM version 24.0 [17] and MOTIFSCAN [14] databases. These sequences were then submit-

ted to PSHORT (http://wolfpsort.seq.cbrc.jp/) server for identification of localization signals. For identification of transmembrane helices, HMMTOP (http://www.enzim.hu/hmmtop/html/ submit.html) was used for finding the topology of proteins. For amino acid composition and physico-chemical properties, PROT-PARAM (http://expasy.org/tools/protparam.html) was used.

MLO Protein Alignment and Phylogenetic Analysis

Identified putative *Mlos* from *S. bicolor* were used for phylogenetic classification of *Mlos* from *O. sativa* and *A. thaliana*. The sequences from different species were aligned using Clustalw [33] and phylogenetic inferences were constructed using MEGA5.0 [32].

Identification of Conserved Motifs/Transcription Factors and Cis-regulatory Elements

All Mlo proteins from *Arabidopsis*, rice and *Sorghum* were used for conserved motif study using MEME version 4.4.0 [4,5] in Mlo protein domain (Functional Signature Sequences) part. *Mlo* protein sequences were subjected to INTERPROSCAN version 4.4 [28] for protein functional analysis.

Designing of Molecular Markers (Primers) for Full Length Amplification and Gene Expression Study

Identified complete *Mlo* genomic sequences from *S. bicolor* were used to design primers for complete gene amplification. Expression primers to study the expression of identified genes during pathogenesis were designed using primer3 [31] based on hypothetical mRNA obtained from gene prediction tool.

Results

Domain based homology search using tBLASTn txid4558 of Whole-Genome-Shotgun Sequences (WGS) database identified 13 genes, designated as *SbMIo1* to *SbMIo13*, out of 14 hits form *S. bicolor* genome (Table 1).

Table 1- Genome wide identification of MIo gene family in
C bioclar

3. <i>bicoloi</i>							
SI. No.	Gene Name	Primary Accession No.	Start	End			
1	SbMlo1	ABXC01000744.1	818	6012	1		
2	SbMlo2	ABXC01000489.1	131090	137248			
3	SbMlo3	ABXC01000917.1	326708	330902			
4	SbMlo4	ABXC01002307.1	95611	100790			
5	SbMlo5	ABXC01002806.1	40722	44916			
6	SbMlo6	ABXC01003117.1	79694	86858			
7	SbMlo7	ABXC01004301.1	16063	22266			
8	SbMlo8	ABXC01004476.1	55604	62500			
9	SbMlo9	ABXC01006196.1	1	5000			
10	SbMlo10	ABXC01006197.1	1	4531			
11	SbMIo11	ABXC01006196.1	14548	21790			
12	SbMIo12	ABXC01006822.1	44376	53573			
13	SbMIo13	ABXC01006924.1	10660	15860			

Chromosomal Localization of Predicted SbMIo Genes

Using gene prediction tool, 12 full length genes were successfully predicted out of the 13 identified genes, and their organization is summarized in Table 2. Chromosome 9 has three of these genes, chromosomes 1, 6 and 10 have two genes each, while chromosome 2, 3, 4 and 5 have one gene each. The number of exons per gene ranged from 8 to 15, but most of the genes had 11-14 exons. Thus, *Mlo* genes were distributed on eight out of the 10 chromosomes of *S. bicolor*.

Gene name	Chromosome No.	Exons	Introns (NC)
SbMlo1	1	12	11
SbMlo2	1	15	14
SbMlo3	2	12	11
SbMlo4	3	11	10
SbMlo5	4	8	7
SbMlo6	5	14	13
SbMlo7	6	14	13
SbMlo8	6	13	12
SbMlo9	9	14	13
SbMIo10	9	11	10
SbMIo11	9	14	13
SbMIo12	10	13	12
SbMIo13	10	9	8

Table 2- Organization of the S. bicolor Mlo genes.

Phylogenetic Relationships among MIo Proteins of Sorghum

The complete catalog of MIo proteins in a single plant species is useful for viewing the existing structural and functional diversity associated with their diverse role in plants. The evolutionary relationships among the 13 SbMlo proteins were analyzed by subjecting the amino acid sequences deduced from the identified 13 SbMlo genes for multiple sequence alignment. These proteins formed two main groups: SbMlo6 and SbMlo8 formed one group (group B), and the remaining 11SbMlos formed the group A, which consisted of two subgroups (subgroups I and II had 8 and 3 proteins, respectively).

The putative amino acid sequences of the 13 SbMlo were subjected to multiple sequence alignment analysis using clustalW. Four motifs, having consensus sequence and FWF residues, are totally conserved among the 13 SbMlo proteins (Fig. 1b). Evolutionary study suggests that SbMIo10 has 80.2% and 73.7% similarity with SbMIo9 and SbMIo11, respectively, SbMIo4 is 65.1% similar to SbMIo9, SbMIo3 has 62.3% identity with SbMIo5, and SbMIo2 and SbMIo1 are 58.8% and 50.9%, respectively, identical with SbM-Io13. Similarly, SbMIo7 is 50.1 and 50.2% similar to SbMIo9 and SbMIo10, respectively, SbMIo12 is 47.4% identical with SbMIo9, and SbMlo6 has 42.6% identity with SbMlo8. Over this entire alignment pattern it was found that SbMIo10, SbMIo9 and SbMlo11 showed a high degree of similarity with each other, while SbMIo6 showed the lowest percentage of homology.

SbMlo2_chrl_FGENESH_	YFVSFFRQFFRSVRRTDYLTLRHGFISAHLS	PGTRINFRKYIKRSLEDDF
SbM1013 chr10 FGENESH	YISNFFRQFFRSVRQADYSALRHSFVNVHLA	PGSKTDFQKYIKRSLEDDF
SbMlol chrl FGENESH	WIVGFFRQFFASVTKVDYLTMRQGFINYHLS	PNAK NFQQYIKRSLEDDF
SbMlo5 chr4 FGENESH	W	GHPK NFYNYMNRALEVDF
SbMlo7 chr6 FGENESH	RSFFKQFYGSVSNDDYIAMRLGFVMEHFP	GHPK NFYDYMIKALEKDF
SbM103 chr2 FGENESH	FIEKHCP	GNPK NFYNYMI RAFEADY
SbMlo10 chr9 FGENESH	WLHSFGKQFYRSVSKSDYTTMRLGFIMTHCP	GNPN OFHRYMVRVLEADF
SbMloll chr9 FGENESH	WLHSFLKQFYRAVSKSDYNTMRHGFIMTHCP	SNPK
SbMlo9 chr9 FGENESH	WLHSFRKOFYGSVAKSDYAAMRLGFIMTHCP	GNPKTDFHKYMMRVLESDF
SbMlo4 chr3 FGENESH	WLHSFVK0FYGSVTKSDYTTMRLGFITTHCP	ANPRIDERRYMMRALEADE
SbM1o12 chr10 FGENESH	WITAFLKQFHDSVSKSDYEALRSAFIVMHYP	QKPD DFHKYMI RAVEHEF
SbMlo6 chr5 FGENESH	WMLCFLROFKGSITRSDYLALRLGFVTYHKL	PHS- DFHKYMVRSMEDDY
SbMlo8 chr6 FGENESH	WLVCFVAOFGOSVVRADYLILRKGFIMTHNL	PPT-TOFHNYMIRSMEEEF
		* *: : .* ::
SbMlo2 chrl FGENESH	KTVVGISPPIWASALAVMLFNVHGUHNLFWF	STIPLVVIL
SbM1o13 chr10 FGENESH	KVIVGISPTIWASALIFLFLNVNGUHTMLWI	SIMPVVIIL
SbMlol chrl FGENESH	KVVVGISLPIWFVAIFILLLDIEG GTLIWI	SFVPLVILL
SbM1o5 chr4 FGENESH	KKVVGISWYIWAMLMIFLLLNVHGUYVYIWL	SVAPFILLLVLGSKMEHII
SbMlo7 chr6 FGENESH	KRVVSIKWYYWIFVMIFLLLNITGUHSYFWI	SLVPLALLL IGTKLEHII
SbMlo3 chr2 FGENESH	KKVVGISWYIWALLMVFLLLNVHGUYVYTWL	SLVPFILLLVIGCKMEHVI
SbM1010 chr9 FGENESH	KKVVGISWYIWVFVVIFLLLNVNGUHTYFWI	AFLPLFLLLAIGTKLEHVI
SbMloll chr9 FGENESH	RKVVGISWYIWIFVVIFLFLNVDGUHVYFWI	SFLPLILLLAVGTKLEHII
SbMlo9 chr9 FGENESH	KKIVGTSWRIWIFVVIFLLLNVNGUHTYFWM	AFLPLVLLLAVGTKLEHVI
SbMlo4 chr3 FGENESH	KKVVGISWYIMIFVVVFMLLNVNGUHTYFMI	SFIPLLLLLAVGTKLEHVI
SbM1012 chr10 FGENESH	KRVVGISWYIWLFVIVFLLLNINGUHTYFWL	AFLPLFLLLIVGAKLEHII
ShMlo6 chr5 FGENESH	NGTIGISMPI MAYATUCIFINIHGINIYEMI.	SEVEVENUT AOLALEU
SbM108 chr6 FGENESH	REIVGUSGLINGFUUCFMLENVDGSNLYFWI	ATLPVTLVL VGAKLOHVI
	* * * * * * * *	*. *
ShMlo2 chrl FGENESH	AMMAIRITERHTV-IOGMPVVKLSDD	MEGKPRLULHLIHFASFON
SbM1013 chr10 FGENESH	CRMAIDITERHAV-VOCIPLVOVSDSTF	WFSKP FVLFLIHFTLFON
SbMlol chrl FGENESH	MEMANEIODKATV-IKGAPAVEPSDRFF	WENRPRWVLFLIHLTLFON
SbMlo5 chr4 FGENESH	TELALEVAOKHTA-IEGVLVVTPSDELF	WFHRPKLVLLLIHIILFON
SbM107 chr6 FGENESH	NKLAYEVASKHAA-GOGGEGGIVVSPSDELF	WFHSPRLVLVLIHFILFON
SbM103 chr2 FGENESH	TEMAVEVAOKHTA-IEGDVVVAPSDDF	WFHRPKVVLYLIHFILFOI
ShMlol0 chr9 FGENESH	AOLAHDVARKHTA-IRGDVIVKPSDR	MEGRERITLYLTHEILEON
SbM1011 chr9 FGENESH	ARLVHDVAKKHTA-IRDDVIVKPSDR	WEGKPRIILYLIHEILFON
SbMlo9 chr9 FGENESH	AOLAYDVARKOTATIEGDLVVTPSDOME	WFGRPRIILHLIHFILFON
SbMlo4 chr3 FGENESH	TOLAOEVAEKHSA-IEGDLVVNPSDDIF	WFGRPKIVLYLIHFILFON
SbM1012 chr10 FGENESH	TRLAORAAASLSKDTREAPKIKPSKGUP	WEHKPRLULHMINFILFON
SbMlo6 chr5 FGENESH	ARATAPYVGSOLKLEDD	WFGKP RW
ShMlo8 chr6 FGENESH	ATLTARGAKMSTYGPPIOPRDDIF	MERKER FLLML THEVLEON

Fig. 1b- Alignment of 13 SbMIo proteins identified from S. bicolor

Gene structure prediction

The organization of the predicted SbMlo genes in terms of intron/ exon distribution pattern shown in Table 3 and Fig. 2a._The minimum genomic gene size was 2207 bp for SbMlo5, while the maximum size was 6733 bp for SbMlo12. In terms of proteins, the minimum size was 250 aa (28.55 kDa) for SbMlo5, and the maximum size of 654 aa (74.47 kDa) was for SbMlo8. Compostional study of the indentified SbMlo proteins revealed that in most of the, Leucine was the most preponderant amino acid, followed by Val, Ala, Ser and Ile (Fig. 2b).

Fig. 2a- Complete gene organization including Exon-intron boundaries for each SbMLO genes

Fig. 2b- Amino acid composition comparartive graph of the 13 identifies Sb*Mlo* proteins

Table 3- SbMIo intron-exon boundaries, CDS size, full length of the encoded hypothetical amino acid sequence with molecular weight and theoretical pl.

Gene	Genomic size	CDS size	Protein size	Molecular	Theoretical
Name	(introns+ exons, bp)	(bp)	(amino acid)	weight (Da)	pl
SbMlo1	4422	1692	563	63599.9	9.53
SbMlo2	4314	1719	572	65051	9.13
SbMlo3	3839	993	310	36308.9	8.26
SbMlo4	3953	1434	477	53606.4	9.26
SbMlo5	2207	753	250	28554.4	6.6
SbMlo6	4695	1410	469	53872.5	9.01
SbMlo7	3836	1533	510	57328	9.35
SbMlo8	4463	1965	654	74471.6	9.21
SbMlo9	3171	1440	479	53972.3	8.27
SbMIo10	3008	990	329 (p.s)		
SbMIo11	5461	1647	548	61792.9	8.73
SbMIo12	6733	1545	514	57780.7	8.99
SbMIo13	2477	1572	523	57725	9.3

Transmembrane helix prediction and toplology determination of the13 Sb*Mlo* proteins were done using HMMTOP [34]. The number of transmembrane helices ranged from 5 for Sb*Mlo*10 to 9 for Sb*Mlo*1 and Sb*Mlo* 9 (Table 4).

Table 4- Transmembrane helices prediction and toplology of the predicted 13 SbMlo proteins from S. bicolor.

Gene Name	N- terminus	Number of trans mem- brane helices	Positions of trans membrane helices	Total entropy of the model	Entropy of the best path
SbMlo1	OUT	9	15-32, 63-80, 160-179, 210 -227, 232-251, 282-300, 305-323, 364-388, 407-425	17.0166	17.0204
SbMlo2	OUT	7	17-36, 63-81, 144-163, 265 -284, 299-318, 349-372, 387-410	17.0175	17.0215
SbMlo3	IN	7	19-38, 97-114, 141-160, 165-182, 229-246, 265-284, 291-308	17.0165	17.0181
SbMlo4	IN	8	18-35, 58-75, 98-115, 227- 244, 267-284, 289-306, 348 -365, 370-387	17.0127	17.015
SbMlo5	IN	4	47-64, 69-86, 135-152, 165 -182	17.0103	17.0115
SbMlo6	OUT	6	15-32, 63-80, 147-168, 207 -224, 281-304,348-365 13-30, 59-76, 154-173, 268	17.0173	17.0218
SbMlo7	OUT	7	-285, 292-309, 359-376, 395-416	17.0141	17.0178

Table 4- Continues

SbMlo8 IN 8 24-41, 96-113, 132-149, 230- 251, 299-316, 354-371, 378- 395, 463-485 14-31, 62-79, 106-125, 159-178, 240-257, 282-299, 306-323, 371 17.0214 17.0251 370-178, 17.0196 SbMlo9 OUT 9 240-257, 282-299, 306-323, 371 17.0153 17.0196 -388, 407-426 SbMlo10 OUT 5 76-93, 110-129, 134-151, 191- 215, 234-253 17.0172 17.0191 SbMlo11 OUT 7 17-34, 65-82, 158-180, 270-287, 17.0131 17.0161 SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 17.0102 17.0141 SbMlo13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197						
SbMIo8 IN 8 251, 299-316, 354-371, 378- 395, 463-485 17.0214 17.0214 17.0251 SbMIo9 OUT 9 240-257, 282-299, 306-323, 371 17.0153 17.0196 SbMIo10 OUT 9 240-257, 282-299, 306-323, 371 17.0153 17.0196 SbMIo10 OUT 5 76-93, 110-129, 134-151, 191- 215, 234-253 17.0172 17.0191 SbMIo11 OUT 7 17-34, 65-82, 158-180, 270-287, 17.0131 17.0161 SbMIo12 OUT 7 16-33, 64-83, 129-148, 265-284, 17.0102 17.0141 SbMIo12 OUT 7 19-36, 67-84, 190-209, 251-267, 314-331, 338-355, 394-411, 442 17.0148 17.0197				24-41, 96-113, 132-149, 230-		
395, 463-485 14-31, 62-79, 106-125, 159-178, SbMlo9 OUT 9 240-257, 282-299, 306-323, 371 17.0153 76-93, 110-129, 134-151, 191- 215, 234-253 SbMlo10 OUT 5 SbMlo11 OUT 7 29-306, 363-382, 403-426 SbMlo11 OUT 7 294-311, 358-375, 394-416 SbMlo12 OUT 7 29-306, 363-382, 403-420 19-36, 67-84, 190-209, 251-267, SbMlo13 IN 8	SbMlo8	IN	8	251, 299-316, 354-371, 378-	17.0214	17.0251
SbMlo9 OUT 9 240-257, 282-299, 306-323, 371 17.0153 17.0196 -388, 407-426 -388, 407-426 -388, 407-426 17.0191 17.0172 17.0191 SbMlo10 OUT 5 76-93, 110-129, 134-151, 191- 17.0172 17.0191 SbMlo11 OUT 7 17-34, 65-82, 158-180, 270-287, 17.0131 17.0161 SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 17.0102 17.0141 SbMlo12 OUT 7 16-36, 67-84, 190-209, 251-267, 314-331, 338-355, 394-411, 442 17.0148 17.0197				395, 463-485		
SbMio9 OUT 9 240-257, 282-299, 306-323, 371 17.0153 17.0196 -388, 407-426 -388, 407-426 -388, 407-426 -388, 407-426 -388, 407-426 -388, 407-426 -369, 110-129, 134-151, 191- 17.0172 17.0191 215, 234-253 17-34, 65-82, 158-180, 270-287, 17.0131 17.0161 294-311, 358-375, 394-416 17.0131 17.0161 SbMIo12 OUT 7 16-33, 64-83, 129-148, 265-284, 17.0102 17.0141 289-306, 363-382, 403-420 19-36, 67-84, 190-209, 251-267, 314-331, 338-355, 394-411, 442 17.0148 17.0197				14-51, 02-79, 100-125, 159-176,		
-388, 407-426 SbMlo10 OUT 5 76-93, 110-129, 134-151, 191- 215, 234-253 SbMlo11 OUT 7 17-34, 65-82, 158-180, 270-287, 294-311, 358-375, 394-416 SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 17.0102 17.0141 289-306, 363-382, 403-420 19-36, 67-84, 190-209, 251-267, SbMlo13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197	SbMlo9	OUT	9	240-257, 282-299, 306-323, 371	17.0153	17.0196
SbMlo10 OUT 5 76-93, 110-129, 134-151, 191- 215, 234-253 17.0172 17.0191 SbMlo11 OUT 7 17-34, 65-82, 158-180, 270-287, 294-311, 358-375, 394-416 17.0131 17.0161 SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 289-306, 363-382, 403-420 17.0102 17.0141 SbMlo13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197				-388, 407-426		
SbMio10 OUT 3 215, 234-253 17.01/2 17.	ShMa10		5	76-93, 110-129, 134-151, 191-	17 0172	17 0101
SbMlo11 OUT 7 17-34, 65-82, 158-180, 270-287, 294-287, 294-311, 358-375, 394-416 17.0131 17.0161 SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 265-284, 289-306, 363-382, 403-420 17.0102 17.0141 SbMlo13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197	30101010	001	5	215, 234-253	17.0172	17.0191
SbMio12 OUT 7 294-311, 358-375, 394-416 17.0131 17.0131 SbMio12 OUT 7 16-33, 64-83, 129-148, 265-284, 289-306, 363-382, 403-420 17.0102 17.0141 SbMio13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197	ShMa11		7	17-34, 65-82, 158-180, 270-287,	17 0121	17 0161
SbMlo12 OUT 7 16-33, 64-83, 129-148, 265-284, 289-306, 363-382, 403-420 17.0102 17.0141 289-306, 363-382, 403-420 19-36, 67-84, 190-209, 251-267, 314-331, 338-355, 394-411, 442 17.0148 17.0197		001	1	294-311, 358-375, 394-416	17.0131	17.0101
SbMio12 2001 7 289-306, 363-382, 403-420 17.0102 17.0102 17.0101 19-36, 67-84, 190-209, 251-267, 19-36, 67-84, 190-209, 251-267, 314-331, 338-355, 394-411, 442 17.0148 17.0197	ChMa12		7	16-33, 64-83, 129-148, 265-284,	17 0100	17 01 / 1
19-36, 67-84, 190-209, 251-267, SbMlo13 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197	SDIVIIOTZ	001	1	289-306, 363-382, 403-420	17.0102	17.0141
SbMI013 IN 8 314-331, 338-355, 394-411, 442 17.0148 17.0197				19-36, 67-84, 190-209, 251-267,		
	SbMIo13	IN	8	314-331, 338-355, 394-411, 442	17.0148	17.0197
-464				-464		

Genome Wide Evolutionary Relationships Among Sorghum, Rice and Arabidopsis MIo Gene Families

The predicted 13 SbMlo proteins were subjected to multiple sequence alignment along with the 15 *Arabidopsis* At*Mlo* and 12 *Oryza* Os*Mlo* proteins, and a phylogenetic tree was constructed by software ClustalX2.0.10 with UPGMA method and bootstrap analysis (1,000 reiterations) using MEGA5.0 (Fig. 3).

Fig. 3. Ancestral states of the phylogenetic tree were inferred using the maximum parsimony method; the total numbers of Mlo gene sequences taken were 15 from *A. thaliana*, 12 from *O. sativa* and 13 from *S. bicolor*.

The 40 *Mlo* proteins formed three groups: Group I is the largest with 17 Mlo proteins (9 *Arabidopsis*, 5 *Oryza* and 3 *Sorghum* proteins), group II is almost equally large with 16 proteins (3 *Ara*-

bidopsis, 5 *Oryza* and 8 *Sorghum* proteins), and group III is the smallest with only 7 proteins (3 *Arabidopsis, 2 Oryza* and 2 *Sorghum* proteins). Thus group I is dominated by At*Mlos*, group II has predominantly Sb*mlos*, while group III has almost equal representation from the three species. Further, group III is the most homogeneous of the three groups, while Group I and II show considerable sequence heterogeneity. The group I has At*Mlo* 2, 3, 5, 6,7, 8, 9, 10 and 12, Os*Mlo* 1, 2, 3, 6 and 12, and Sb*Mlo* 1, 2 and 13. The members of group II were At*mlo* 1, 13 and 15, Os*mlo* 5, 7, 8, 9 and 10, and Sb*mlo* 4, 5, 3, 7, 9, 10, 11and 12. The group III has At*mlo* 4, 11, and 14, Os*mlo* 4 and 11, and Sb*mlo* 6 and 8.

Motif and Transcription Factor Analysis

The 13 SbMIo proteins along with 15 At*MIo* and 12 Os*MIo* proteins were analyzed for the presence of conserved motifs using MEME software. A total of 26 conserved motifs were observed in the 40 proteins using 30 number of motifs with minimum width 50 and maximum width 100 parameter (Fig. 4a,b).

Fig.4a- Highly representative motif study using Sorghum, rice and Arabidopsis MIo proteins.

Out of the 26 predicted motifs, Motif 01 was the most conserved pattern found in all the *Sorghum*, rice and *Arabidopsis Mlo* proteins. Motif 26 (in Sb*Mlo*13 and Sb*Mlo*8), Motif 24 (in Sb*Mlo*11 and Os*Mlo*11), Motif 23 (in Sb*Mlo*12 and At*Mlo*7), Motif 20 (in At*Mlo*15 and Sb*Mlo*7), Motif 17 (in Sb*Mlo*8 and Os*Mlo*6), Motif 16 (in Sb*Mlo*7 and Os*Mlo*5), Motif 14 (in Sb*Mlo*8 and Os*Mlo*4) and Motif 12 (in Sb*Mlo*2 and Os*Mlo*1) were the least conserved and

were observed in only two *MLO* proteins each. Motif 11 was present in three proteins (Sb*Mlo*6, Os*Mlo*11 and At*Mlo*4), Motif 10 was detected in four *MLO* proteins (Sb*Mlo*8, Os*Mlo*4, At*Mlo*14 and At*Mlo*11), Motif 13 was found in five proteins (Sb*Mlo*11, Sb*Mlo*10, Sb*Mlo*4, Os*Mlo*9 and Os*Mlo*2), Motif 09 (Sb*Mlo*11, Os*Mlo*6, Os*Mlo*3, At*Mlo*12, At*Mlo*6 and At*Mlo*2) and Motif 08 (Os*mlo*7, Os*Mlo*11, Sb*Mlo*5, Sb*Mlo*6, Sb*Mlo*8 and Sb*Mlo*12) occurred in six *Mlo* proteins each, while Motif 07 was present in seven proteins (Os*Mlo*11, Sb*Mlo*8, Sb*Mlo*4, Sb*Mlo*5, Os*Mlo*7, Sb*Mlo*12 and Os-*Mlo*8). Thus Motif 01 was present in all the 40 *Mlo* proteins, and Motifs07, 08 and 09 were the next most frequent (found in 7 and 6 *Mlo* proteins); the remaining motifs occurred in 5 or less number of *Mlo* proteins.

Motif	Width	Best possible match
1	82	NPKFNFHK/NKRSLEDDFKKVVGISU/LUAFVNIFNLLNVNGU/TYFUISFIPLILLLAVGTKLQHIITQNAHEIQEK/TVI
2	74	FEIAYFFUIUTTYGYDSCFMDNHGYIIFRLCIGVVYQFLCSYSTLPLYALVTQMGSMMKKAIFDEQTQKALKUW
3	70	LEQTYTWAVATVCTVIVLISIALERGIHRLGKWLKKKRKKALTEALEKVKEELMLLGFISLLLTVGQNYI
4	50	KGKVPLVSTEALHQLHIFIFVLAVTHVTTCCITHMLGRAKHRKUKKUEDE
5	50	TQDTFFRRHKNAWSKNALLFWIHCFFRQFYRSVTKSDYLTMRHGFINTH
6	50	QNICIPSNWYNYNY FCCNPEDYEEYDKIDKHETDAANED LYPGQREEARR
7	50	PYWKPSDDHFWFGKPEIWLHLIHFILFQWSFEIGFFFWWLWTVIVCSCIM
8	50	QFWCSTSTLPLYAIITQNGSKFKKALIGENIRESLHGWCKNVKDKNRHRN
9	82	EKKNYKDGRI SOSNTPPSSRPTTPTHGSSPVHLLHNYNNRSEDPPSAPTAPGYPPRNEDYYPYPVADQQRQHPEDPNHFRQR
10	59	DDSTIRTETSTICSLDDDDDDDDDDDDPQETSPTQDRPYQEQQIRPPYLNPESPRNPCPCHD
11	50	SVCSLDTYVETDHETHTVGTLSRTASATSLDDQLTVATVDDEPDCGENDR
12	100	KKKQQNGGSHEDGSETPGTDTATPAREAGENQRREDDPVRNPHRYKHRYKVGGHRGPTGDSDDSDCDDTDPPFASPTRHLIPPAKQRSLDAERAEVRVDV
13	50	AQKVKMRKGLKNNGAASKGAATTUNNSPGPSVE IMVRMAAGEED AAEGNG
14	50	GGGSG/MMQRQQASVSAFSSFS/RGGMMTRSMSH/GFAALRRGFGGPCRM
15	61	QOYKTTCYSNRYPELDDESGDYDADCEEATPRPAPRDFELVKKVWDHKENTGDTWRDGEFD
16	50	KICIDEGLMEHWLPCRGDGKASSHHGEAAVRHGVWSGAGVRGGGGENTKG
17	69	TPTWAVAYVCAVLVAGSVAMERGIHILSHOSHCGRRRPUPSPSHDSPQGPQULKKTHRNPPYKKNCKNK
18	52	PGSRQHG <mark>MEND</mark> SGSGDAPRRGPGAGDAGHQHSNITRINAGDINCPFKPDKDN
19	50	KNGIEERIMEKYNEIGAIPPINDEEEGEEENQEDMECRGDEIDPNNGDAG
20	50	VKRAKROVDKGASCVGTPHDGRRPMPGIQANWRIGKGRSRPNQNPKEKSE
21	50	RSDCSCYDSDKFHDKPRSANCPPPPPRDLVQCYNYAIADDDNDDSKNRR
22	50	KGDANPDPAVESPHSGENKEEVGDEVRPQRNADGGEVGGEQQDGNGVGSK
23	50	GDVEATRL+RKDTSGHSSNKINYKQPDEEDENVDVDDGVEDAIDRIGQGP
24	50	IDR3RGGNNKPMGCQADEESIMNAFSGEDRVVKNDNCKRGEDAEVGCCGE
25	50	QKNAKKKREAPGQNGPPRPNARPKAGGDIEVIIPANINESGDVKEQDQAQ
26	50	MGGGGGGGGNFRELDCHPRWREAGRCNYHFAIENNLEGGIHHVGEFFSRR

Fig.4b.- Multilevel consensus sequences for the MEME defined motifs observed among *MIo* proteins from *Sorghum*, rice and *Arabidopsis.*

Cis-Regulatory Element Analysis

The diverse functions attributed to different *MIo* genes involve interactions of transcription factors with different conserved sequences in the promoter regions of the respective genes. Cisregulatory element analysis was carried out with a view to understand the regulatory aspects of the different SbMLO genes. This was achieved by retrieving 500bp upstream sequences from the initiation codon of 12 putative SbMlo genes since the transcription start site (TSS) and initiation codon region are missing from the SbMIo10 sequence due to non-completion of sequence. TATA and CAAT boxes were frequently located within -1 to -200bp. G-Box was the most frequent of the cis-elements; it was found in all the MIo genes, except SbMIo5 and SbMIo10. ABRE was observed in five genes (SbMlo1, SbMlo3, SbMlo7, SbMlo9, SbMlo12), Abox was found in seven genes (SbMlo2, SbMlo4, SbMlo6, SbMlo8, SbMlo9, SbMlo11, SbMlo13), ARE was present in four SbM-LO genes (SbMlo1, SbMlo7, SbMlo8, SbMlo9), ACE in five genes (SbMIo4, SbMIo5, SbMIo6, SbMIo9, SbMIo11); AAGAA in two genes (SbMlo5, SbMlo8), AT-rich sequence in two genes (SbMlo6, SbMlo7), Box-3 and 4 in two genes (SbMlo2, SbMlo7), CCAAT in five genes (SbMIo1, SbMIo7, SbMIo8, SbMIo11, SbM-

lo12), CGTCA in six genes (SbMlo1, SbMlo4, SbMlo5, SbMlo8, SbMIo10, SbMIo13), CCGTCC in six genes (SbMIo2, SbMIo4, SbMlo8, SbMlo9, SbMlo11, SbMlo13), CAT element in two genes (SbMlo6, SbMlo7), CATT in only SbMlo, CTAG in SbMlo11, CGmotif in SbMlo12, GATA in SbMlo9, GA-motif in SbMlo11 and SbMIo13, GT-1 motif in SbMIo6 and SbMIo12, GAG-motif in SbMlo8 and SbMlo13, GCC in SbMlo2, GARE and GTGGC motifs in SbMlo6, I-box in four genes (SbMlo5, SbMlo9, SbMlo12, SbMlo13), MBS in three genes (SbMlo4, SbMlo5, SbMlo12), O2-site in three genes (SbMlo6, SbMlo12, SbMlo13), Sp1 in eight genes (SbMio1, SbMio2, SbMio5, SbMio6, SbMio8, SbMio9 SbMlo12 SbMlo13), Skn-1 in SbMlo4-9 and SbMlo13, LTR in three genes (SbMlo2, SbMlo4, SbMlo11), MNF-1 in SbMlo4, TGACG in five genes (SbMIo1, SbMIo4-6, SbMIo8, SbMIo10, SbMIo13), TATC in SbMIo11, TCCACCT-motif in four genes (SbMIo2, SbM-Io3, SbMIo11, SbMIo13), TCA-element in three genes (SbMIo1, SbMIo5, SbMIo12), TATCCAT/C in SbMIo2, TGA element in SbM-Io4, TCT in SbMIo5, Motif IIb in three genes (SbMIo4, SbMIo6, SbMIo12), plant AP2-like in SbMIo4, and circadian related element in three of the MIo genes (SbMIo6, SbMIo7, SbMIo9).

Thus G-Box was the most frequent *cis*-elements found in 10 of the *Mlo* genes; Sp1, was the next most abundant element occurring in eight genes, while CGTCA, CCGTCC were present in six genes each. Other elements were found in the upstream sequences of five or less number of the *Mlo* genes.

Fig. 5- Cis-acting elements study of 12 SbMlo genes using PLANTCARE

Since all the 15 *A. thaliana Mlo* genes are fully characterized, we retrieved -1000 upstream regions of these genes to find out their putative *cis*-acting elements and compared them with the *cis*-

elements identified in the upstream regions of the 12 putative *Mlo* genes of *S. bicolor*. The predicted *cis*-acting elements for *AtMlos* and their expression data retrieved using TAIR database (http:// www.arabidopsis.org/) are summarized in Table 5. The *SbMlos* showing sequence homology to the *AtMlos* are also listed.

Primers for PCR Amplification in Sorghum

From complete genomic sequences of the 13 identified SbMlo genes, 24 primer pairs were designed to amplify full length genes from *S. bicolor* (Supplementary table 1). Further, to study the expression of the SbMlo genes, 13 primer pairs were designed using primer3 [31] on the basis of the predicted RNA encoded by the SbMlo gene CDS (Supplementary table 2).

Supplementary Table 1- Genomic primer pairs for amplification of identified full length genes.

	Primer name	Primer sequence	Ln	Tm	GC%	COMPL	Product Size
	SbMlo1F1	CCACTTTGATCCTCCCCTTT	20	60.3	50	0	0007hm
	SbMlo1R1	CTGCACGCGAGAAGATGTAA	20	60.16	50	2	220700
	SbMlo1F2	AGGGCGTCTGAAAGTAAGCA	20	60.02	50	0	2005hm
	SbMlo1R2	TGCACGTTTGTTCAGAGAGG	20	60.02	50	0	32050p
	SbMlo2F1	CAATCGTCTCATCTGCTCCA	20	59.94	50	2	2022ha
	SbMlo2R1	CCGAACAGATCGGAAGAACT	20	59.28	50	3	202200
	SbMlo2F2	GACCCAAAACGTCTCCAGAA	20	60.09	50	1	2011bp
	SbMlo2R2	CCGATTTCACTCGGCTTTAC	20	59.71	50	1	301 lbh
	SbMlo3F1	CTAATCGGTTCCGCTCTCAA	20	60.34	50	2	2051bp
	SbMlo3R1	TTCTGTGCAACCTCAACAGC	20	60.03	50	2	203100
	SbMlo3F2	GCTGTTGAGGTTGCACAGAA	20	60.03	50	0	2012hn
	SbMlo3R2	GGAATCCCCACTCCATCATA	20	59.56	50	0	201200
	SbMlo4F1	ACGTATATTGGGCCAACGAC	20	59.71	50	2	2165hn
	SbMlo4R1	TGGAATCTCTGCCAATACCC	20	59.89	50	2	210000
	SbMlo4F2	GGAAACACTGGGAGGATGAA	20	59.9	50	3	2540hn
	SbMlo4R2	CCTAAACACATCGCCTCCAT	20	59.96	50	5	20400p
	SbMlo5F1	GGAGGACAAGATCCAGCAAA	20	60.2	50	2	2503hn
	SbMlo5R1	CCCATGGCAGACATGTTGTA	20	60.39	50	2	20000p
	SbMlo6F1	GCCTCGATCCGCATTAACTA	20	60.2	50	1	2313hn
	SbMlo6R1	CCTTGTTATGGAGCCCTTGA	20	60.07	50		201000
	SbMlo6F2	TCTAGCTGCGGAACCAATTC	20	60.35	50	0	3008hp
	SbMlo6R2	GGCCTTAGCAAATCATCAGC	20	59.81	50	0	0000bb
	SbMlo7F1	CAACGGTCCATGACCATACA	20	60.24	50	1	2047hn
	SbMlo7R1	TAGAGCGAAACACACGATGC	20	60.02	50		204100
	SbMlo7F2	CATAGATCGGCGGTATGCTT	20	60.08	50	1	2506hn
	SbMlo7R2	GAGCTCGGCCTCTCAAATTA	20	59.55	50		200000
	SbMlo8F1	GATCCCCCATTTTCCTTCTC	20	59.7	50	1	2578hn
	SbMlo8R1	ACGTACAAGCCACATGACCA	20	60.03	50		201000
	SbMlo8F2	TGAATCTTGCAGGGTGACTG	20	59.83	50	2	2714bp
	SbMlo8R2	GAGAAGCCATTTCTCGTCCA	20	60.34	50	-	211100
	SbMlo9F1	ATACCCGATGGGGATTTAGC	20	60.01	50	0	1855bp
	SbMlo9R1	CACCTTACCAGCCAACACAA	20	59.61	50	•	
	SbMIo9F2	GACCCAGCTTGTTGTTGTTG	20	59.19	50	0	2525bp
	SbMIo9R2	CTCCACTCATGCATTCCTTG	20	59.24	50	-	
	SbMIo10F	TGCTTTTAGGAGGTGCACAG	20	59.07	50	2	3160bp
	SbMIo10R	AAGGCTAACGGGCCTAAACT	20	59.29	50	-	
	SbMIo11F1	TCCTTCCAACCAAACACTCC	20	59.94	50	1	3123bp
	SbMIo11R1	AGCTCCTTAAGGCTCCGTTAGT	22	59.94	50		p
	SbMIo11F2	TGTACAACGCTGGACCATTC	20	59.57	50	0	3176bp
	SbMIo11R2	TGCTCTCGGCAAAGACCTAT	20	59.98	50	•	0 osp
	SbMIo12F1	GGGAGTGTATGCTTGCCTTT	20	59.2	50	1	2998bp
	SbMIo12R1	GACCCAAATTCCTGGAGATG	20	59.34	50		
	SbMIo12F2	CCAIGCAAGAGAGACAACCA	20	59.83	50	0	2836bp
	SbMI012R2	CAGGAAGCAACTCGTCACAA	20	60.02	50		
	SbMIo12F3	GIGCCITIICACTGGAAACC	20	59.57	50	0	2795bp
	SbMIo12R3	CITIERCCCCTTCCTCCT	20	59.55	50	-	
	SbMI013F	GCCCAGAAAICGGAGAGAAT	20	60.55	50	0	3210bp
ļ	SbMI013R	CIGCATACIGICIGCIAAGGTACG	24	60.38	50		r

Supplementary Table 2- Primer for expression studies of SbMlo

	genes.				
Primer name	Primer sequence	Tm	GC	Base pairs	Product Size
SbMlo 1F	GTGGAGCCAAGTGACAGGTT	60.16	55	20	202
SbMlo 1R	AGAGGACCTGAAGAGCCACA	59.99	55	20	202
SbMlo 2F	AGGCATGCCAGTGGTAAAAC	60	50	20	200
SbMlo 2R	TGTCTGCTCGTCGAAAATTG	59.99	45	20	290
SbMlo 3F	AGGCATTGGGAAGGAAAGAT	59.9	45	20	004
SbMlo 3R	CCCCTGCAGTGTTTCTCAAT	60.11	50	20	221
SbMlo 4F	CTCCCTCATCGTGGTCATCT	60.07	55	20	067
SbMlo 4R	ATTCCTTGGAACACCGTCAG	59.97	50	20	207
SbMlo 5F	AGTCGTTGGCATAAGCTGGT	59.76	50	20	160
SbMlo 5R	GCAACCTCAAGAGCCAACTC	60	55	20	100
SbMlo 6F	TGGCTCACAACTCAAACTGC	60.03	50	20	150
SbMlo 6R	TGCTGTAGCTGCACCAAAAC	60.06	50	20	IJZ
SbMlo 7F	TTAGTTCCGTTGGCTCTGCT	60.02	50	20	010
SbMlo 7R	AACTCGAAGGCGTTCTGAAA	59.99	45	20	212
SbMlo 8F	CGTGAGGGGTACGAGTCATT	59.99	55	20	202
SbMlo 8R	AAACAAGCCACATGACCACA	60.01	45	20	203
SbMlo 9F	TTGGCACACGTACTTTTGGA	60.15	45	20	226
SbMlo 9R	AAACGCGTTCTGAAAGAGGA	59.99	45	20	220
SbMlo 10F	CTCATGCATCATGGGACAAG	60.07	50	20	242
SbMlo 10R	ATCGTCGATTCGTTCTTGCT	59.84	45	20	243
SbMlo 11F	CACACAGCTATCGAGGACGA	60.01	55	20	201
SbMlo 11R	TAGCAGCTCCCCATCTGAGT	59.97	55	20	204
SbMlo 12F	GCAAAGGGATCTTGGATGAA	60.01	45	20	247
SbMlo 12R	TCAGCAACAGGAAGACGATG	59.98	50	20	241
SbMlo 13F	CAACCTTCGTGCTCTTCCTC	59.99	55	20	100
ShMIn 13R	CGAGTCCATCCCGTACTCAT	59 95	55	20	122

Discussion

Characteristics of S. bicolor MIo genes

The 13 predicted SbMlo genes are distributed on 8 chromosomes as provided in the chromosome data of. S. bicolor genome in NCBI datamodel. Sorghum chromosome 9 has 3 SbMlo genes, chromosomes 10 and chromosome 1 have 2 genes each, while chromosomes 2, 3, 4, and 5 have 1 gene each. The complete catalogue of Mlo proteins in a single plant species is useful for viewing the existing sequential, structural and functional diversity associated with its diverse roles played in plants. The evolutionary relationships between different MIo proteins were analyzed by subjecting the deduced amino acid sequences encoded by the identified 13 SbMlo genes for multiple sequence alignment. Amino acid composition of these hypothetical MIo proteins showed that they all are leucine-rich. It also provides evidence that Mlo gene family belongs to leucine-rich class of plant disease resistance genes. Multiple sequence alignment of these SbMlo proteins showed that they are a well conserved family divided into two subgroups containing 3 clusters. The analysis of introns/exon gene structures revealed that most introns have conserved positions and phases, providing the evidence for the intron-early theory, and that multiple independent intron loss events are likely to have occurred during evolution of flowering plants. The hypothesis that genome wide and tandem duplication contributed to the expansion of the MIo gene family across the plant kingdom seems to be applicable for Sorghum as well as two other diploid species, namely, Arabidopsis and Oryza, which contain 15 and 12 Mlo genes, respectively [21].

Evolutionary relationship among *S. bicolor*, *O. sativa* and *A. thaliana Mlo* genes

Evolutionary relationship of the 13 Sorghum Mlo genes with the 12 O. sativa [22], and 15 A. thaliana genes (obtained from complete genome of the species) revealed a similar classification pattern in sequence evolution in these three species. The 15 members of the Arabidopsis Mlo gene family are well characterized, and they have been shown to mainly function as modulators of plant defence and cell death. The coding regions of the 13 putative SbMlo genes show substantial coding sequence homology with one or the other member of the Arabidopsis Mlo gene family; therefore, the SbMlo genes are also expected to play an important role in the defense mechanism of Sorghum [3,8,23,36] Mlo genes are novel Calmodulin-binding Proteins [20]. Some members of Arabidopsis Mlo gene family are also reported to play an important role during leaf senescence, seedling development, stigma receptivity, pollen tube development, fruit ripening, and development of flower bud and flower abscission zone [7].

Evolutionary study of SbMlo genes revealed two groups (A and B) of which group A could be divided into three clades. Clade III contained SbMlo1. 2 and 13, which exhibited similarity with AtMlo9, 10, 5, 7 and 8. Clade II contains SbMlo5 and 3, which showed homology with AtMIo12, 2, 6 and 3. Clade I consisted of SbMIo 7, 4, 9, 10, 11 and 12, which were grouped with AtMlo1, 13 and 15. Clade IV contained SbMlo6 and 8 that showed similarity with AtMIo4, 11 and 14. Cluster I of Group A consisted of SbMIo1, 13 and 2, which has been classified with AtMlo2, AtMlo6, AtMlo12, AtMIo3, AtMIo9, AtMIo10, AtMIo5, AtMIo7 and AtMIo8. Promoter region comparison between Arabidopsis and Sorghum Mlo genes showed possible role of the SbMlos during defense response to fungus, seedling development stage and leaf senescence with modulatory function as reported in the case of Arabidopsis genes [7,9,18]. Cluster -II group A had SbMlo10, SbMlo11, SbMlo9, SbMIo4,SbMIo5, SbMIo7, SbMIo3 and SbMIo12, which have been classified with AtMIo1, AtMIo15 and AtMIo13; thus these SbMIo genes may play a role during early seedling growth, cotyledon vascular system development, in pollen and in papillae [7,9,37]. Studies on Group B cluster-III revealed that SbMlo8 and SbMlo6 were closely similar with AtMIo4, AtMIo11 and AtMIo14. SbMIo8 and SbMlo6 may play an important role during seedling growth, flower development, fruit abscission as per phylogenetic classification and promoter comparison with Arabidopsis.

Insilico functional study from Sorghum MIo genes

The *cis*-regulatory element analysis of the predicted *SbMlo* genes revealed major putative function as regulation of genes associated with abiotic and biotic stresses, photoperiod response, growth hormone and meristem specific elements. The occurrence of CAAT, TATA and G-Boxes is very high in the upstream regions of the predicted *SbMlo*. Genes *SbMlo5*, *10*, *4*, *5*, *6* and *12* showed MYB binding site involved in flavonoid biosynthetic gene regulation. Skn-1 element required for endosperm expression was observed in *SbMlo4* to *SbMlo9*. TTGAC (WBOXATNPR1), TCA (Salicylic acid responsive), TGAC (WBOXNTERF3), TCT (light responsive), TATCCAT/C, TGACG (methyl jasmonate), TCCACCT, CCGTCC elements were also observed in the upstream regions, which may play a role in regulation of genes involved in defense mechanism of *Sorghum* plants.

 Table 5- Study of cis-acting elements in upstream region of AtMlo genes and their function based on GUS activity patterns. The elements common in SbMlo and AtMlo promoter region are highlighted in green color.

Gene (A. thaliana)	Expression during (as shown by GUS activity patterns)	Cis-acting elements (Promoter/ Silencer/Enhancer) in -1000 upstream sequences	Coding region (exonic) sequence similarity with <i>S. bicolor</i>
AtMIo1	Early seedling growth, in root and cotyledon vascular system, in pollen and in papillae.	5UTR Py-rich stretch, AE-box, ARE, ATCT-motif, Box4, CAAT-box, GA- motif, GARE-motif, GCN4_motif, I-box, MBS, P-box, Skn-1_motif, TATA- box, TC-rich repeats, TCA –element, TCT-motif, chs-CMA1a	SbMlo4,SbMlo9, SbMlo10, SbMlo11
AtMio 3	Early seedling growth, in primary root and lateral root primordia, in fruit abscission zone, in vascu- lar system of cotyledons and in trichomes of young leaves. It was not expressed in mature rosette leaves	A-box, AAGAA-motif, AE-box, ARE, Box4, BoxI, CAAT-box, CCGTCC-box, CGTCA-motif, F-box, G-Box, HD-Zip1, HD-Zip2, HSE,LTR, Skn-1_motif, TATA-box, TC-rich repeats, TCA-element, TCT-motif, TGACG-motif, chs-CMA2b, circadian	SbMio1
AtMio 4	Early seedling growth, in roots and lateral root primordia, in flower and fruit abscission zone, in vascular system of root, cotyledons and young leaves. It was not expressed in mature rosette leaves	5UTR Py-rich stretch, AAGAA-motif, ABRE, ACE, ARE, Box-W1, CAAT- box, CATT-motif, CCAAT-box, G-Box, GT1-motif, Gap-box, MBS, MRE, MSA-like, Sp1, TATA-box, TC-rich repeats, TCA-element, TGA-element, W box	SbMlo6*
AtMlo 5	Seedling growth, in cotyledon vascular system, and in stigma, anther and pollen grains. It was not expressed in rosette leaves	AAGAA-motif, AC-II, ACE, ARE, CAAT-box, CCAAT-box, CTAG-motif, G- Box, GA-motif, GAG-motif, GARE-motif, HSE, LAMP-element, TATA-box, TATC-box, TC-rich repeats, TCA-element, TCCC-motif, TCT-motif, TGA- element	SbMlo2
AtMlo 6	Early seedling growth, in roots and lateral root primordia, in flower and fruit abscission zone, in vascular system of cotyledons, young leaves and petals, in mature rosette leaves and in anthers	AE-box, ARE, ATCT-motif, BoxI, CAAT-box, CGTCA-motif, ERE, GA-motif, GARE-motif, GATA-motif, GT1-motif, LTR, Nodule-site2, Skn-1_motif, TATA-box, TCA-element, TGACG-motif	SbMlo1
AtMlo 7	In vegetative organs (RT-PCR experiments)and in pollen grains	ABRE, ACE, AE-box, ARE, AT-rich element, ATCT-motif, Box4, BoxI, CAAT-box, ELI-box3, G-box, HSE, MRE, SKn-1_motif, TATA-box, TC-rich repeats	SbMIo3
AtMlo 8	Seedling growth, in cotyledons and hypocotyl, and in fruit abscission zone	3-AF1 binding site, 5UTR Py-rich stretch, AAGAA-motif, AE-box, ARE, ATGCAAAT motif, Box4, CAAT-box, GAG-motif, GATA-motif, HSE, Skn-1_motif, HSE, Skn-1_motif, TATA-box, TC-rich repeats, TCA-element, TCT-motif	SbMlo13
AtMlo 9	Early seedling growth, in cotyledon vascular system, in flowers (with strong expression in anthers) in siliques and fruit abscission zone; not expressed in roots, or in mature rosette leaves	5UTR Py-rich stretch, Box4, Boxl, CAAT-box, CGTCA-motif, ERE, O2-site, TA-rich region, TATA-box, TC-rich repeats, TCT-motif, TGA-element, TGACG-motif, WUN-motif, circadian	SbMio2
AtMio 10	in root and cotyledon vascular system, in root- shoot junction and lateral root primordia and in developing siliques	3-AF1 binding site, 3-AF3 binding site, 5UTR Py-rich stretch, AAGAA-motif, ABRE, AE-box, AT-rich element, CAAT-box, CCAAT-box, CGTCA-motif, G- box, GAG-motif, GATA-motif, Gap-box, I-box, MNF1, MRE, P-box, Skn- 1_motif, TATA-box, TATC-box, TC-rich repeats, TCA-element, TCT-motif, TGACG-motif, circadian	SbMio2
AtMlo 11	During early seedling growth, in root tips and cotyledon vascular system, in floral organs (anthers and stigma), and in fruit abscission zone	AAGAA-motif, AE-box, ARE, Boxl, C-repeats/DRE, CAAT-box, CGTCA- motif, ERE, GA-motif, GAG-motif, GARE-motif, GCN4_motif, LTR, MBS, O2 -site, Skn-1_motif, TATA-box, TGA-box, TGACG-motif	SbMlo8*
AtMlo 12	During early seedling growth, in root tips and cotyledon vascular system, in floral organs (anthers and stigma), and in fruit abscission zone	3-AF1 binding site, AAGAA-motif, ABRE, AE-box, ARE, CAAT-box, CAT- box, CATT-motif, CGTCA-motif, G-box, HSE, I-box, LTR, MBS, O2-site, Skn-1_motif, TATA-box, TC-rich repeats, TCCACCT-motif, TGA-element, TGACG-motif, circadian, rbcS-CMA7a	SbMio1
AtMlo 13	Early seedling growth, in root and cotyledon vascular system, in pollen and also in placenta of developing siliques	5UTR Py-rich stretch, AAGAA-motif, ARE, AT-rich element, Box4, CAAT- box, CGTCA-motif, E2Fa, G-box, GA-motif, I-box, LAMP-element, LTR, MBS, Skn-1_motif, TATA-box, TC-rich repeats, TCA-element, TGACG- motif, box S, circadian, sbp-CMA1c	SbMio12*
AtMIo 14	Early seedling growth, in developing primary root, and particularly in root tips of 10-day old seed- lings; it was not expressed in leaves or flowers	5UTR Py-rich stretch, AAGAA-motif, AE-box, ARE, Box4, CAAT-box, CCAAT-box, CGTCA-motif, GARE-motif, GCN4_motif, GT1-motif, LTR, MBS, Skn-1_motif, TATA-box, TC-rich repeats, TGACG-motif, circadian	SbMlo8
AtMlo 15	Early seedling growth, in root tips and flower (papillae, anthers and pollen grains)	AAGAA-motif, ACE, ARE, Box4, BoxI, Box-W1, CAAT-box, CATT-motif, ERE, G-Box, GATA-motif, GT1-motif, Gap-box, MBS, MRE, Skn1_motif, TATA-box, TC-rich repeats, TCA-element, TCCC-motif, W box, box S, circadian	SbMio4, SbMio9, SbMio10, SbMio11

S.N.	Cis-acting Element	Sequence	Function
1	AAGAA-motif	gGTAAAGAAA	unknown
2	ABRE	TACGTG	cis-acting element involved in the abscisic acid responsiveness
3	Box 4	ATTAAT	part of a conserved DNA module involved in light responsiveness
4	Box III	CATTTACACT	protein binding site
5	CAAT-box	CAAT	common Cis-acting element in promoter and enhancer regions
6	G-Box	CACGTG	cis-acting regulatory element involved in light responsiveness
7	GAG-motif	GGAGATG	part of a light responsive element
8	GC-motif	CCCCCG	enhancer-like element involved in anoxic specific inducibility
9	GCC box	AGCCGCC	unknown
10	I-box	GATAAGATA	part of a light responsive element
11	Skn-1_motif	GTCAT	cis-acting regulatory element required for endosperm expression
12	Sp1	CC(G/A)CCC	light responsive element
13	TATA-box	ТААТА	core promoter element around -30 of transcription start
14	TC-rich repeats	ATTCTCTAAC	cis-acting element involved in defense and stress responsiveness
15	Box-W1	TTGACC	fungal elicitor responsive element
16	MBS	TAACTG	MYB binding site involved in drought-inducibility
17	MNF1	GTGCCC(A/T)(A/T)	light responsive element
18	TGACG-motif	TGACG	cis-acting regulatory element involved in the MeJA-responsiveness
19	plant_AP-2-like	CGCGCCGG	Unknown
20	GATA-motif	AAGGATAAGG	part of a light responsive element
21	HSE	AAAAATTTC	cis-acting element involved in heat stress responsiveness
22	LTR	CCGAAA	cis-acting element involved in low-temperature responsiveness
23	MSA-like	TGCAACGGC	cis-acting element involved in cell cycle regulation
24	TCA-element	TCAGAAGAGG	cis-acting element involved in salicylic acid responsiveness
25	TGA-element	AACGAC	auxin-responsive element
26	ACE	AAAACGTTTA	cis-acting element involved in light responsiveness
27	LAMP-element	CCTTATCCA	part of a light responsive element
28	rbcS-CMA7a	GGCGATAAGG	part of a light responsive element
29	TATCCAT/C-motif	TATCCAT	Unknown
30	box S	AGCCACC	Unknown
31	AE-box	AGAAACAT	part of a module for light response
32	F-box	CTATTCTCATT	Unknown
33	WUN-motif	TCATTACGAA	wound-responsive element
34	A-box	CCGTCC	cis-acting regulatory element related to meristem specific activation
35	AT1-motif	AATTATTTTTTATT	part of a light responsive module
36	circadian	CAANNNNATC	cis-acting regulatory element involved in circadian control
37	GARE-motif	TCTGTTG	gibberellin-responsive element
38	GC-motif	CCCCCG	enhancer-like element involved in anoxic specific inducibility
39	HD-Zip 3	GTAAT(G/C)ATTAC	protein binding site
40	3-AF1 binding site	TAAGAGAGGAA	light responsive element
41	O2-site	GATGACATGA	cis-acting regulatory element involved in zein metabolism regulation
42	P-box	CCTTTTG	gibberellin-responsive element
43	ATCT-motif	AATCTAATCC	part of a conserved DNA module involved in light responsiveness

Table 6- Cis-acting Elements, their sequences and function

Conclusion

In this study, a comprehensive computational analysis was conducted, and 13 members of the *Mlo* gene family were identified in *Sorghum*. A complete overview of this gene family in *Sorghum* is presented, including the multiple sequence alignment, gene structures, phylogeny, chromosomal locations and their *cis*-regulatory element analysis. The comparative phylogenetic analysis with respect to the *Mlo* gene family clearly indicated the proximity of *Sorghum* Mlos with rice and *Arabidopsis Mlo* genes, even when *Sorghum* and rice are monocots, while *Arabidopsis* is a dicot. Further, the presence of similar groups and subgroups in comparative phylogeny of *Sorghum*, rice and *Arabidopsis Mlo* genes indicates conservation of *Mlo* gene sequences even in widely separated taxonomic groups of plants. The identified proteins showed similarity with signature accession PF03094 (Pfam database), IPR004326 (INTERPROSCAN), cellular component integral to membrane (GO: 0016021) and biological process with cell death (GO: 0008219) from Gene Ontology database (http:// www.geneontology.org/). The *in silico* investigation of putative genes from *Sb MIo* gene family needs to be supported by wetlab experiments through expression profiling of respective genes by designing the molecular markers using hypothetical mRNA and amplification of full length candidate *MIo* genes from *S. bicolor*.

Acknowledgement

The facilities provided by DBT-funded SUB-DIC, Centre for Bioinformatics, Faculty of Science, Banaras Hindu University, Varanasi are thankfully acknowledged.

References

- Altschul S.F., Gish W., Webb Miller Eugene W. Myers and Lipman D.J. (1990) *Journal of Molecular Biology*, 215,403-410.
- [2] Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. and Lipman D.J. (1997) *Nucleic Acids Research*, 25, 3389-3402.
- [3] Ascencio-Ibáñez J.T., Sozzani R., Lee T.J., Chu T.M., Wolfinger R.D., Cella R., Hanley-Bowdoin L. (2008) *Plant Physiol.* 148, 436-54.
- [4] Bailey T.L. and Gribskov M. (1998) Bioinformatics, 14, 48-54.
- [5] Bailey T.L., Williams N., Misleh C. and Li W.W. (2006) Nucleic Acids Research, 34, W369-W373.
- [6] Büschges R., Hollricher K., Panstruga R., Simons G., Wolter M., Frijters A., Van Daelen R., Van der Lee T., Diergaarde P., Groenendijk J., Töpsch S., Vos P., Salamini F. and Schulze-Lefert P. (1997) *Cell*. 88, 695-705.
- [7] Chen Z., Hartmann H.A., Wu M.J., Friedman E.J., Chen J.G., Pulley M., Schulze-Lefert P., Panstruga R., Jones A.M. (2006) *Plant Mol. Biol.*, 60, 583-97.
- [8] Chen Z., Noir S., Kwaaitaal M., Hartmann H.A., Wu M.J., Mudgil Y., Sukumar P., Muday G., Panstruga R., Jones A.M. (2009) *Plant Cell*, 21, 1972-91.
- [9] Consonni C., Bednarek P., Humphry M., Francocci F., Ferrari S., Harzen A., Ver Loren van Themaat E., Panstruga R. (2010) *Plant Physiol.* 152, 1544-61.
- [10]Consonni C., Humphry M.E., Hartmann H.A., Livaja M., Durner J., Westphal L., Vogel J., Lipka V., Kemmerling B., Schulze-Lefert P., Somerville S.C., Panstruga R. (2006) Nat. Genet., 38, 716-20.
- [11]Devoto A., Hartmann H.A., Piffanelli P., Elliott C., Simmons C., Taramino G., Goh C.S., Cohen F.E., Emerson B.C., Schulze-Lefert P., Panstruga R. (2003) J. Mol. Evol., 56(1), 77-88.
- [12]Devoto A., Piffanelli P., Nilsson I., Wallin E., Panstruga R., von Heijne G., Schulze-Lefert P. (1999) *J. Biol. Chem.*, 274, 34993-5004.
- [13]Elliott C., Zhou F., Spielmeyer W., Panstruga R., Schulze-Lefert P. (2002) Mol. Plant Microbe. Interact. 15(10), 1069-77.
- [14]Falquet L., Pagni M., Bucher P., Hulo N., Sigrist C.J., Hofmann K., Bairoch A. (2002) *Nucleic Acids Research*, 30, 235-238.
- [15]FAO (2010) http://www.fao.org/corp/statistics/en/.
- [16]Feechan A., Jermakow A.M., Torregrosa L., Panstruga R. and Dry I.B. (2008) Functional Plant Biology, 35, 1255-1266.
- [17]Finn R.D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich V., lassmann T., Moxon S., Marshall M., Khanna A., Durbin R., Eddy S.R., Sonnhammer E.L.L. and Bateman A. (2006) *Nucleic Acids Research*, 34, D247-D251.
- [18]Humphry M., Bednarek P., Kemmerling B., Koh S., Stein M., Göbel U., Stüber K., Pislewska-Bednarek M., Loraine A., Schulze-Lefert P., Somerville S., Panstruga R. (2010) Proc. Natl. Acad. Sci. 107, 21896-901.
- [19] Jorgensen J.H. (1992) Euphytica, 63, 141-152.
- [20]Kim M.C., Panstruga R., Elliot C., Muller J., Devoto A., Yoon H.W., Park H.C., Cho M.J., Schulze-Lefert P. (2002) Nature 416, 447-450.
- [21]Konishi S., Sasakuma T. and Sasanuma T. (2010) Genes Genet. Syst., 85, 167-175.

- [22]Liu Q. and Zhu H. (2008) Gene, 409, 1-10.
- [23]Ma S. and Bohnert H.J. (2007) Genome Biol., 8, R49.
- [24]Marta S. Lopes, Jose Luis Araus, Philippus D.R. Van Heerden and Christine H. Foyer (2011) J. Exp. Bot., 62, 3135-3153.
- [25]Panstruga R. (2005) *Plant Mol. Biol.*, 59(3), 485-500.
- [26]Piffanelli P., Zhou F., Casais C., Orme J., Jarosch B., Schaffrath U., Collins N.C., Panstruga R., Schulze-Lefert P. (2002) *Plant Physiol.*, 129(3), 1076-85.
- [27] Pruitt K.D., Tatusova T. and Maglott D.R. (2007) Nucleic Acids Research, 35, D61-D65.
- [28]Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R. and Lopez R. (2005) *Nucleic Acids Research*, 33, W116-W120.
- [29]Schauser L., Wieloch W., Stougaard J. (2005) J. Mol. Evol., 60, 229-237.
- [30]Solovyev V., Kosarev P., Seledsov I., Vorobyev D. (2006) Genome Biol., 7(S10.) 1-12.
- [31]Steve Rozen and Helen J. Skaletsky (2000) Bioinformatics Methods and Protocols: Methods in Molecular Biology., 365-386.
- [32]Tamura K., Peterson D., Peterson N., Stecher G., Nei M. and Kumar S. (2011) *Molecular Biology and Evolution*, 28, 2731-2739.
- [33]Thompson J.D., Higgins D.G., Gibson T.J. (1994) Nucleic Acids Res., 22, 4673-4680.
- [34]Tusnády G.E. and Simon I. (2001) Bioinformatics, 17(9), 849-50.
- [35]Varshney R.K., Hoisington D.A., Tyagi A.K. (2006) *Trends Biotechnol.* 24, 490-499.
- [36]Vogel J., Somerville S. (2000) Proc. Natl. Acad. Sci., 97, 1897 -902.
- [37]Wang Y., Zhang W.Z., Song L.F., Zou J.J., Su Z., Wu W.H. (2008) Plant Physiol., 148, 1201-11.
- [38] Wolter M., Hollricher K., Salamini F., Schulze-Lefert P. (1993) Mol. Gen. Genet., 239, 122-128.