
Bioinfo Publications 25

RESOURCE SCHEDULING IN THE PEER TO PEER NETWORK

International Journal of Networking
ISSN: 2249-278X & E-ISSN: 2249-2798, Volume 2, Issue 1, 2012, pp.-25-27.
Available online at http://www.bioinfo.in/contents.php?id=108

MALVE P.U.1* AND GULHANE V.S.2

1Department of Computer Engineering, Govt. Polytechnic, Murtizapur-444107, MS, India.
2Department of CSE, Sipna’ COET, Amravati-444606, MS, India.
*Corresponding Author: Email- pravin.malve29@gmail.com

Received: February 21, 2012; Accepted: March 15, 2012

Abstract- An efficient resource discovery mechanism is one of the fundamental requirements for Peer to peer computing systems, as it aids
in resource management and scheduling of applications. Resource discovery activity involves searching for the appropriate resource types
that match the user’s application requirements. Various kinds of solutions to resource discovery have been suggested, including centralized
and hierarchical information server approaches However, both of these approaches have serious limitations in regard to scalability, fault
tolerance, and network congestion. This paper describes purposed Resource scheduling algorithm that can be used for efficient resource
discovery in peer to peer network.
Keywords- Peer to Peer Network, Resource Scheduling, Network Animator, ns-2 Simulation, Resource discovery

International Journal of Networking
ISSN: 2249-278X & E-ISSN: 2249-2798, Volume 2, Issue 1, 2012

Introduction
An efficient resource discovery mechanism is one of the funda-
mental requirements for peer to peer computing systems, as it
aids in resource management and scheduling of applications.
Peer-to-Peer (P2P) technology enables any network-connected
device to provide services to another network-connected device.
A device in a P2P network can provide access to any type of re-
source that it has at its disposal, whether documents, storage
capacity, computing power, or even its own human operator.
The device in a P2P network could be anything ranging from a
super computer to simple PDA. P2P enables communication via a
variety of network routes, thereby reducing network overloading.
P2P has the capability of serving resources with high availability
at a much lower cost while maximizing the use of resources from
every peer connected to the P2P network..
P2P can offer a similar level of robustness by spreading network
and resource demands across the P2P network. Several different
P2P architectures have been proposed so far, a comprehensive
survey is provided in [1].

Related work
For Resource discovery, Lamnitchi et al [1] have compared differ-
ent searching methods. it turned out that a learning -based strate-
gy achieves more performance. It consists of forwarding a request
to the node that answered similar requests previously (i.e. Using
possibly large cache.
Moreover results have shown that searching mechanisms which
keep a history of past events than the ones that do not store any
information about node. Cheema et al [2] purposed a solution for
exploiting the single keyword DHT lookup for CPU cycle sharing
systems. This solution consists in encoding resource identifiers
based on static and dynamic resource descriptions. The static
ones could be, for instance, the OS configuration, RAM, or CPU
speed. While dynamic descriptions are related to the availability
levels of resources, such as a percentage of idle CPU. With this
encoding mechanism, it is possible to create mapping between
resource and node identifiers in structured peer-to-Peer networks.
Paredes [3] presents a solution through which this queries are
forwarded to the neighbor nodes with the best availability and
reputation.

Citation: Malve P.U. and Gulhane V.S. (2012) Resource Scheduling in The Peer to Peer Network. International Journal of Networking,
ISSN: 2249-278X & E-ISSN: 2249-2798, Volume 2, Issue 1, pp.-25-27.

Copyright: Copyright©2012 Malve P.U. and Gulhane V.S. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 26

BOINC[4] is a platform for volunteer distributed cycle sharing
based on the client-server model. CCOF [5] is an open peer-to-
peer system seeking to harvest idle CPU cycles from its connect-
ed users. OurGrid [6] is a peer-to-peer network of sites which tries
to facilitate the inter-domain access to resources in a equitably
manner.

Resource scheduling algorithm
The implemented algorithm which is written inside rc.cc is situated
inside the router through which packets are transferred and fil-
tered. It also includes different parameters which are defined for
the implementation of the resource scheduling system which in-
cludes different types of packet which is transferred between dif-
ferent nodes. There may be number of resources which are pre-
sent inside the network providing different services. Scheduling of
various requests on the particular resource service provider is
handled through this code.
#include "rc.h"
#include "rcPacket.h"
#include "cmu-trace.h"
#include "ip.h"
#include <cstdlib>
#include <stdlib.h>
#include <math.h>
//This is important: It provides interface for tcl script
static class rcClass: public TclClass
{
public:
 rcClass (): TclClass("Agent/Rc") {}
 TclObject* create (int, const char*const*) {
 return (new Rc ());
 }} class_rc;
Rc::Rc () : Agent(PT_RC), RcTimer (*this)
{}
 void Rc::recv (Packet* p, Handler*)
{ //create ip packet pointer and read IP header received packet==>
necessary to find position of the node (left or right)
 hdr_ip *ip = hdr_ip::access(p);
//create rc pointer and read ipke header of received packet
 hdr_rc* my= hdr_rc::access(p);
 // Discard the packet //necessary as now packet is processed
//printf ("Packet Received\n");
 //Create Packet
 Packet* q = allocpkt ();
 //create IP header for our packet
 hdr_ip *ip_q = hdr_ip::access(q);
//create communication header for our packet:
 hdr_cmn* cmn_q = hdr_cmn::access (q);
 //now create our IPKE packet
 hdr_rc* my_q= hdr_rc::access(q);
 switch (ip->daddr()) {
case 2:
//check resource type
 switch (my->resourceType)
{ case 1:
 //send Request to node 3
 my_q->resourceType = my->resourceType;
 cmn_q->size () = 100;

 cmn_q->ptype () = PT_RC;
 ip_q->daddr ()= 3;
 ip_q->dport ()= ip->dport ();
printf ("\t Node 2: Request received... Now forwarding to grid node
3 for execution\n");
 send (q, 0);
 //Packet::free (q); break;
case 2:
 my_q->resourceType = my->resourceType;
//set size: may be wrong not needed in our case
 cmn_q->size () = 100;
 cmn_q->ptype () = PT_RC;
 ip_q->daddr ()= 4;
//now generate unique port and use it; ns2 standard ip_q
->dport ()= ip->dport ();
printf ("\t Node 2: Request received... Now forwarding to grid node
4 for execution\n");
//send request to node 4
send (q,0); break;
default: //server request
printf ("\t Node 2: Grid serving request of type %d\n", my-
>resourceType);
break;
} break;
case 3:
//serve request
printf("\tNode 3: Serving request of type 1\n"); break;
 case 4: //serve request
printf("\tNode 4: Serving request of type 2\n");
 break; default:
printf ("\tNode %d:Packet received\n", ip->daddr());
 break; }
// Packet::free (q);
 Packet::free (p); }
int Rc::command(int argc, const char*const* argv)
{ //This is executed when command "Request" is received from
node
if (strcmp (argv[1], "Request") == 0) {
 //Create Packet
 Packet* p = allocpkt (); //create IP
header for our packet
 hdr_ip *ip = hdr_ip::access (p);
 hdr_cmn*cmn = hdr_cmn::access (p);
 //now create our IPKE packet
 hdr_rc* my= hdr_rc::access (p); / /
Our request data
 my->resourceType = atoi (argv[2]);
 //set size: may be wrong not needed in our case
 cmn->size () = 200;
 cmn->ptype() = PT_RC;
 ip->daddr()= 2;
 ip->dport()= here_port_;
printf ("Sending request:%d\n", my->resourceType);
 send (p, 0);
return (TCL_OK); }
return (Agent::command(argc, argv)); }
void rcTimeout() {
//not needed

International Journal of Networking
ISSN: 2249-278X & E-ISSN: 2249-2798, Volume 2, Issue 1, 2012

Resource Scheduling in The Peer to Peer Network

Bioinfo Publications 27

Implementation
The ns-2 simulator is a discrete-event network simulator targeted
primarily for research and educational use. The ns-2 is written in
C++. ns-2 is open-source,
Ns-2 is scripted in OTcl and results of simulations can be visual-
ized using the Network Animator nam. It is not possible to run a
simulation in ns-2 purely from C++ (i.e., as a main() program with-
out any OTcl). Considering these features of ns-2 ns-allinone-2.34
is used for the implementation of the proposed Scheduling algo-
rithm.
NS-2 is designed to run from on most UNIX based operating sys-
tems. In the purposed work the Fedora core 13 operating system
is used for installation and configuration of the ns-2.34. The pur-
posed Scheduling algorithm demonstrated scheduling of various
tasks having a peer-to-peer network containing One resource
consumer and Three resource providers.
For the execution of this tcl script the following command is exe-
cuted on the terminal.
ns simgrid.tcl
After the execution out.nam file is created and we get the following
output on the terminal.
Sending request:1
Node 2: Request received... Now forwarding to grid node 3 for
execution
Node 3: Serving request of type 1
It took 0.223400 seconds to service request.
Sending request:2
Node 2: Request received... Now forwarding to grid node 4 for
execution
Node 4: Serving request of type 2
It took 0.346800 seconds to service request.
Sending request:3
Node 2: Grid serving request of type 3
It took 0.470200 seconds to service request.
We can run the simulation by executing the following command on
the terminal.
nam out.nam
After execution the output is generated inside the network anima-
tor. The results are shown below

Fig. 1- One resource consumer and Three resource providers.

Conclusion
It can be observed from the output various requests has been
generated from resource consumer. These requests are for dif-
ferent types of resources in the network. The initial request is
forwarded to node 2 but this request is for type 1 resource, this
type of resource is not available at node 2, hence the request is
forwarded to node 3 as resource of type 1 is available at this

node the request get serviced. The result also shows the actual
time required servicing the request If any of the resource is not
available then request is continuously transferred in the network
till that type of resource doesn’t available.

References
[1] Iamnitchi A. and Foster I. Grid resource management: state

of the art and future trends, 413- 429
[2] Cheema A.S., Muhammad M. and Gupta I. (2005) The 6th

IEEE/ACM International Workshop on Grid Computing, 1790-
185.

[3] Paredes F.R. (2008) Topologies de overlays peer to peer
para descoberta de recursos., Master’s thesis, Institute Tech-
nio.

[4] Anderson D.P. The 5th IEEE/ACM International Workshop on
Grid Computing, 4-10.

[5] Lo V., Zhou D., Liu Y. and Zhao S. (2004) 3rd International
Workshop on Peer-to-Peer Systems, 227-236.

[6] Andrade N., Cirne W., Brasileiro F. and Roisenberg P. (2003)
The 9th Workshop on Job Scheduling Strategies for Parallel
Processing.

Malve P.U. and Gulhane V.S.

International Journal of Networking
ISSN: 2249-278X & E-ISSN: 2249-2798, Volume 2, Issue 1, 2012

