
Bioinfo Publications 10

BUILDING A SENSOR NETWORK OF MOBILE PHONES AND SENSOR RELOCATION

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012, pp.-10-15.
Available online at http://www.bioinfo.in/contents.php?id=301

DESHMUKH P.R.1 AND WASANKAR S.W.2

1Department of Computer Science and Engineering, Sipna Area, Amravti, MS, India.
2College of Engineering and Technology, Sipna Area, Amravati, MS, India.
*Corresponding Author: Email- pr_deshmukh@yahoo.com1, snehal.2104@gmail.com2

Received: February 21, 2012; Accepted: March 15, 2012

Abstract- All Mobile phones have a microphone, and most have a camera. Other sensors can be connected to a phone using Bluetooth.
Mobile phones are connected to a network. They have a power supply, based on human user initiated charging.Some Technique providing
efficient methods for the sensor nodes to make their data available to the network, allowing the sensor network applications to access the
data from potentially disconnected and highly mobile devices. We demonstrate an initial system prototype that addresses some of these
concerns. Recently there has been a great deal of research on using mobility in sensor networks to assist in the initial deployment of nodes.
Mobile sensors are useful in this environment because they can move to locations that meet sensing coverage requirements. This paper
explores the motion capability to relocate sensors to deal with sensor failure or respond to new events. We define the problem of sensor
relocation and propose a two-phase sensor relocation solution redundant sensors are first identified and then relocated to the target loca-
tion. We propose a Grid-Quorum solution to quickly locate the closest redundant sensor with low message complexity, and propose to use
cascaded movement to relocate the redundant sensor in a timely, efficient and balanced way.

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

Introduction
Such mobile devices as sensors has a significant advantage over
unattended wireless sensor networks in that deploying the sens-
ing hardware and providing it with network and power is already
taken care of. Secondly, mobile phones can provide coverage
where static sensors are hard to deploy and maintain. No single
entity may have the access rights to place sensors across the
complete coverage domain required by an application, such as a
combination of subway stations, public parks, and shopping malls.
Thirdly, each mobile device is associated with a human user,
whose assistance can sometimes be used to enhance application
functionality. For instance, a human user may help by pointing the
camera appropriately at the target object to be sensed. Our goal
is to enhance the utility of the existing swarm of mobile devices by
presenting it as a physical sensing substrate that sensor network-
ing applications may program for their sensing objectives. Several
applications can be enabled using sensor networks of mobile
phones.

System Description
We build a sensor network of mobile phones that is used as a
shared system, as opposed to a system where a single applica-
tion owns and uses a dedicated set of mobile device carried by
users or vehicles directly involved with that application. In the
shared the phones are carried and used by their respective own-
ers as they need. The sensor networking applications use the
mobile devices when available. The key advantages of a shared
system come from the vast coverage expanse achieved that a

Citation: Deshmukh P.R. and Wasankar S.W. (2012) Building A Sensor Network of Mobile Phones and Sensor Relocation. BIOINFO Sen-
sor Networks, ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, pp.-10-15.

Copyright: Copyright©2012 Deshmukh P.R. and Wasankar S.W. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 11

single dedicated system may never be able to match, and the re-
use of physical resources by multiple applications. The related
trade-offs are difficulty in providing performance guarantees and
limitations in control of the sensor nodes.

Fig. 1- A shared sensor network of mobile phones

The system (Figure 1) consists of the following key entities:
1. Sensors: mobile devices that sense the physical world
2. Network Infrastructure: In our system, this includes: a data

repository that stores all the sensor data provided by the mo-
bile devices, a tasking server that enables applications to pro-
gram the sensor network as per their requirements, and a
sensor proxy that allows disconnected operation for sensors
while making their data available to applications.

3. Users: the applications that access our shared sensor net-
work, or human users who access the sensor data through a
graphical user interface We demonstrate the following aspects
of this system.

Sensor Data Sharing
We have developed a data sharing framework that makes the
sensor data from mobile devices available to network applications.
The mobile devices may be only sporadically connected, or stay
behind firewalls. The first is a publishing client on the mobile
phone that collects samples from the sensors on the phone, ap-
plies predefined filters to the data, buffers the data locally, and
uploads the data as per network availability using a web service
interface. This client runs in parallel with other applications on the
phone and can be activated or deactivated as necessary. The
client allows the user to configure whether data may be automati-
cally collected or only when the user initiates a sample capture.
The client also includes functionality that allows remote applica-
tions to program the phones, as described later.

Fig. 2- Wireless Network

We have developed the client software GUI to use only the phone
keypad and the small phone screen. The second component is the
data repository which hosts the web service to accept data sam-
ples from the phones and uses a database to index the uploaded
data. The third component is a sensor proxy that acts as an online
representative for the mobile sensors. This proxy provides a fixed
sensor URL that can be used by applications to access a specific
sensor device directly.

Location Based Indexing
A salient feature of the mobile phone sensor network is that each
sensor node is mobile and the motion pattern cannot be easily
controlled. Most applications are unlikely to be interested in the
data collected by a specific device but rather need data from a
specific region and time window. The device identities of the de-
vices that contributed that data may only be of secondary im-
portance. Thus, it is very important to index the uploaded data by
location and time. This also helps applications avoid any over-
heads in discovering specific mobile phones, tracking their motion,
or waiting for the device to be connected to the network.
In our prototype we obtain location information using:
1. Cell-tower triangulation: The cell-phone network typically

knows the location of a phone using signal strength measure-
ments from one or more cellular base stations.

2. Phone GPS: Many recently released and forthcoming mobile
phones have built in GPS receivers. The GPS based location
information is accurate to several meters when the phone has
good GPS satellite visibility, such as under open sky. We use
GPS location also in our prototype.

Programing
Our system enables sensor network application developers to
deploy their applications without ever deploying a physical sensor.
Instead, the developers may program our shared mobile phone
sensor network to carry out required sensing tasks. This is ena-
bled using the tasking server that is part of the network infrastruc-
ture. We allow mobile phone users to share their sensing re-
sources to varying degrees based on their resources and involve-
ment in the sensor network application. We also allow the applica-
tions to program the network without knowing the identities of any
specific devices in their region of interest or the device capabili-
ties. The tasking server presents the sensor network as a single
object to the applications. Applications can call this object’s meth-
ods to carry our their required sensing tasks, specifying their spati-
otemporal region of interest, measurement tolerances, and delay
constraints.

Sensor Location
In addition, once deployed, sensor nodes may fail, requiring nodes
to be moved to overcome the coverage hole created by the failed
sensor. In these scenarios, it is necessary to make use of mobile
sensors which can move to provide the required coverage. One
example of a mobile sensor is the Robomot. These sensors are
smaller than 0.000047m3 and cost less than 150 dollars. In this
paper we address the problem of sensor relocation.

Related Work
There have been several research efforts on deploying mobile

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

Building A Sensor Network of Mobile Phones and Sensor Relocation

Bioinfo Publications 12

sensors. For example, the work in assumes that a powerful cluster
head is available to collect information and determine the target
location of the mobile sensors. Sensor deployment has also been
addressed in the field of robotics where sensors are deployed one
by one, utilizing the Recently, we proposed three mobility-assisted
sensor deployment protocols where mobile sensors move from
densely deployed areas to sparse areas to increase the coverage.
The protocols run iteratively In each round, sensors first detect
coverage holes around them by utilizing the Voronoi diagram If
coverage holes exist, sensors decide where to move to heal or
reduce the holes by three different distributed algorithms called
VOR, VEC and Minimax.

Problem Statement
In theory, the two protocols we previously proposed can be used
for sensor relocation. For example, after a sensor failure, the sen-
sors neighboring the failed node can execute the algorithms. After
several rounds, the neighbor sensors will move to cover the area
initially covered by the failed sensor. However, moving neighbor
sensors may create new holes in that area. To heal these new
holes, more sensors must move. In addition, since many sensors
are involved, it may take a long time for the algorithm to terminate.
Based on this observation, we propose to first find the locations of
the redundant sensors, and then design an efficient route for them
to move to the destination. To determine which sensor(s) is redun-
dant is a challenging problem. It is hard for a single sensor to
independently decide whether its movement will generate a cover-
age hole. problems: finding the redundant

Fig. 3- System model (manually)

Sensors and then relocating them to the target location. Fig. illus-
trates the sensor relocation problem when grids are used; the
black nodes are used to represent grid heads. Each grid is in-
dexed by a tuple, whose first number is used to represent the
column and the second number is used to represent the row.
Grids (1,3), (0,3), (1,4) and (0,4) have redundant sensors. When a
sensor at grid (3,0) dies, resulting in a coverage hole, its grid head
first needs to locate the redundant sensor and then relocate some
sensor to fix the coverage hole. For the first problem, we propose
a Grid-Quorum solution to quickly identify the redundant sensors.
For the second problem, we propose a cascaded movement solu-
tion to relocate sensors in a timely and energy efficient way.

Finding The Redundant Sensor
In this section, we first give the background and motivation of the
Grid-Quorum idea. Then, we present the detailed solution and
illustrate its advantage in terms of message complexity and re-
sponse time.

Background and Motivation
The problem of finding redundant sensors has some similarity to
the publish/subscribe problem where the publisher advertises
some information and the subscriber requests the information.
Mapping the terminology to our problem, the grids that need more
sensors are the subscribers, and the grids that have redundant
sensors are the publishers. In the publish/subscribe system, the
matching of a request to an advertisement is called matchmaking.
Generally, there are three types of solutions for matchmaking.
(1) Matchmaking occurs at the subscriber, which is referred as
“broadcast advertisement” . In our problem, this is similar to letting
the grids having redundant sensors flood this information. Later,
when some grid needs redundant sensors,
it can get the information quickly.
(2) Matchmaking occurs
at the publisher, which is referred as “broadcast request”
In our problem, this is similar to letting the grids that need sensors
flood the request. The grid that has redundant sensors replies
after receiving the request. (3) Matchmaking happens in the mid-
dle of the network In our problem, this is similar to letting the sup-
ply grid advertise the information to some intermediate grids from
which the demand grid obtains the information. Different from the
traditional publish/subscribe problem, the information in our sys-
tem is not reusable. The information about the redundant sensor
can only be used once, since it may be changed after the redun-
dant sensor moves to the requesting place. Due to this special
property, the message complexity will be very high if we use the
broadcast advertisement approach, which requires two network-
wide broadcasts for each redundant sensor: one for advertisement
and the other for data update after the redundant sensor moves
column. For example, suppose grid (0,3) has redundant sensors,
it only sends the advertisement to grids in a row ((0,3), (1,3), (2,3),
(3,3), (4,3)) and a column ((0,4), (0,3), (0,2), (0,1), (0,0)).When
grid (3,0) is looking for redundant sensors, it only needs to send a
request to grids in a row ((0,0), (1,0), (2,0),(3,0), (4,0)) and a col-
umn ((3,4), (3,3), (3,2), (3,1), (3,0)). The intersection node (0,0)
will be able to match the request to the advertisement. Suppose N
is the number of grids in the network. By using this quorum based
system, the message overhead can be reduced from O(N) to O
(pN). Although the message overhead is very low compared to
flooding, we can further reduce the message overhead by observ-
ing the specialty of our problem.

The Grid-Quorum Solution
In our Grid-Quorum system, we do not require the intersection of
any two quorums. Instead, we deploy two coterie, called supply
coterie and demand coterie separately, and only require that the
quorum belong to the supply coterie intersects with all quorums in
the demand coterie, and vice versa.To construct a Grid-Quorum,
the grid heads belong to the grids in one row are organized into
one quorum, called supply quorum and the grid heads belong to
the grids in a column are organized into one quorum, called de-
mand quorum. We can see that using the geographic information
reduces the cost of building Grid-Quorum to almost zero. Still
Grids (0,4), (1,4), (0,3) and (1,3) have redundant sensors, while
grid (3,0) needs more sensors. The grid head of (1,3) propagates
its redundant sensor information through its supply quorum ((1,4),
(1,3), (1,2),(1,1), (1,0)). The grid head in grid (3,0) searches its

Deshmukh P.R. and Wasankar S.W.

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

Bioinfo Publications 13

demand quorum ((0,0), (1,0), (2,0), (3,0), (4,0)). Grid (1,0) can
reply the information about redundant sensors.

Fig 4- Stopping criteria

and radius of the distance between sa and sc must be farther to
sc than sa. Cluster head of grid (3,0) attaches the location of sa in
the requesting message before forwarding it. When the grid head
in grid (2,0) receives the request message, it will not forward it
further since no closer redundant sensor can be found.. compares
the performance between the Grid-Quorum solution and the
“Broadcast Request” method in a 10_10 grid. The results were
obtained from a simple ns2 simulation; more details on the simula-
tion environment are given later. Cluster heads of neighbor grids
communicate through a gateway sensor. Suppose there is no
other traffic in the network. From the figures, we can see that the
Grid-Quorum solution can significantly reduce the message com-
plexity compared to the “Broadcast request” approach.

Sensor Relocation
General Idea: Cascaded Movement
Having obtained the location of the redundant sensor, we need to
determine how to move the sensor to the target location
(destination). Moving it directly to the destination is a possible
solution. If the redundant sensor is 100 meters away and it takes
at least one minute for the sensor to reach its destination, the
application requirement cannot be met. Moreover, moving a sen-
sor for a long distance consumes too much energy. If the sensor
dies shortly after it reaches the destination, this movement is
wasted and another sensor has to be found and relocated. We
propose to use a cascaded movement to address the problem.
The idea is to find some cascading (intermediate) nodes, and use
them for relocation to reduce the delay and balance the power.
redundant sensor s3 move directly to the destination, s1 and s2
are chosen as cascading nodes. As a result, s3 moves to replace
s2, s2 moves to replace s1, and s1 moves to the destination.
Since the sensors can first exchange communication messages
(i.e., logically move), and ask all relevant sensors
a. Message complexity
b. Response time
(physically) move at the same time, the relocation time is much
shorter. A node si which moves to replace another node sj, is
referred to as sj ’s successor, and sj is referred to as si’s prede-
cessor. In Fig. s3 is s2’s successor and s2 is s3’s predecessor.
We also introduce a virtual node s0, which is used to represent
the target location. It may represent the failed sensor or the loca-
tion where an extra sensor is needed to increase the sensing
accuracy. In Fig. we say s0 is s1’s predecessor and s1 is s0’s
successor. Selecting cascading nodes is not easy since the sen-
sor nodes may be used by some application and their movement

may affect the sensing or communication tasks they are perform-
ing. To ensure that this effect is within application’s requirement,
each sensor si is associated with a recovery delay Ti. After si’s
movement, its successor must take its place within Ti. Ti is deter-
mined by the application based on the critical level of si’s sensing
task, the size of the coverage hole generated by si’s movement,
and other application factors. We use T0 to represent the recovery
delay of the relocation event. It can bethe maximum recovery
delay of the failed sensor or the time limit for an additional sensor
being placed at s0. The T value imposes restrictions on the spatial
relationship and departure time of the cascading nodes. We use ti
to denotethe departure time of si and dji to denote the distance
between si and sj . The following Inequality must be satisfied if sj

is si’s successor. dji/speed − (ti − tj) _ Ti (1) For simplicity, ti is

normalized to be the time period after the relocation request is
sent and t0 (for s0) is set to be 0. Based on Inequality (1), whether
sj can be the the successor of si is not determined solely by its
distance to si, but also si’s departure time. If si moves at t0 (0), sj
must be within speed _ Ti from si; if si moves after another t
minutes, sj can be farther away from si as long as dji _ speed _
(Ti+t). Whether si can stay at its place for this t minutes or must
move immediately is determined by its own predecessor. For
example, if si is the successor of s0, and di0 is shorter than

speed_T0, si can flexibly move between (0, T0−di0/speed). In this

case, we normally

The Metrics to Choose Cascading Nodes
The cascading schedule should minimize the total energy con-
sumption and maximize the minimum remaining energy so that no
individual sensor is penalized. However, in most cases, these two
goals cannot be satisfied at the same time.

Fig. 5-

As shown in Fig.5 suppose all sensors have the same amount of
power. Choice1 consumes less energy, but the involved sensors
will have lower remaining energy. Sensors in Choice2 have higher
remaining energy, but the total energy consumption of Choice 2 is
higher than that in choice1. There is a tradeoff between minimiz-
ing the total energy consumption and maximizing the minimum
remaining energy, and we want to find a balance between them.
Before presenting our solution, we first show some observa-
tions.Based on the sensor deployment result generated by run-
ning VOR, we randomly choose some sensor and deplete its en-
ergy. Then, all cascading schedules to recoverthe failed sensor
are enumerated and compared in terms of the total energy con-
sumption and the minimum remaining energy. Here, the recovery
delay (Ti, i 6= 0) is relaxed for better observation, but the reloca-
tion time (T0) is calculated for reference. The cascading sched-
ules which are worse than some other schedule in both metrics

Building A Sensor Network of Mobile Phones and Sensor Relocation

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

Bioinfo Publications 14

(total energy consumption and minimum remaining energy) will be
ignored; that is, only keep the cascading schedules which perform
better than others at least in terms of one metric. Fig. shows the
total energy consumption and the minimum remaining energy of
these schedules in an increasing order. As shown in the figure,
the total energy consumption is almost flat at the beginning and
then significantly increased, whereas the minimum remaining
energy has a steep increase at the beginning and then becomes
flat. This new metric can be explained in a mathematical way.
Suppose there are two cascading schedules with E1 and E2 as
their total energy consumption, and Emin1 and Emin2 as their
minimum remaining energy. Schedule 1 is chosen since E1

−Emin1 _ E2 −Emin2. This inequality can also be expressed as

E1−E2 _ Emin1−Emin2; i.e., the cascading schedule with more

advantage and less disadvantage should be chosen.

Fig. 6-

In Fig 6. moving s3 directly to the target location is the most ener-
gy efficient solution. However, in this way, s3 will be penalized,
and its minimum remaining energy will be significantly reduced. If
s1 is added as a cascading node, the load of s3 can be shared
and the minimum remaining energy can be improved. Since the
total length of the zigzag line s3s1s0 is only a little bit longer than
the length of s3s0.

Algorithm
Before presenting the algorithm for calculating the best cascading
schedule, we first introduce some notations, and describe how to
modify Dijkstra’s algorithm to calculate the shortest cascading
schedule. The sensor network can be modeled as a complete
weighted graph G(V,E), where vertices correspond to the sensor
nodes. There are edges between any pair of nodes, and the
weight of edge sisj is the distance between si and sj . The remain-
ing power of si before relocation and after relocation is denoted by
Pi and P0 i separately. We represent the energy as the distance
that the sensor can move with this energy. In this way, if si moves

to sj in the relocation, P0 i = Pi − dij . To calculate the shortest

cascading schedule, we cannot simply apply Dijkstra’s algorithm
due to the constraint of the

Modified Dijkstra’s
To calculate the best cascading schedule, we first calculate the
shortest cascading schedule and record its total energy consump-
tion E and its minimum remaining energy Emin. Then, we delete

all the edges sisj if Pi − dij _ Emin and a new graph is generated.

This process continues and a new shortest cascading schedule is
calculated as long as the difference between the total energy
consumption and the minimum remaining energy is increased
compared to the previously calculated cascading schedule. When
the process terminates, the schedule calculated before the last

schedule is

Modified Dijkstra’s Algorithm

Initialization: E = 0, Emin = −2, E0 = 0, Emin0 = −1

while (1)
1. find the shortest cascading schedule using
the Modified Dijkstra’s algorithm
2. record the minimum remaining power as Emin0

3. delete all edges sisj if Pi − dij _ Emin0

4 if E0 − Emin0 < E − Emin then

E = E0,Emin = Emin0
else
return the previously calculated schedule the best schedule, i.e.,
the schedule with the smallest difference between the last two
schedules As shown

Fig. 7-

Distributed Protocol
In this section, we describe how to implement the algorithm pre-
sented above in a distributed way. We first present a distributed
protocol to calculate the shortest cascading schedule and then
describe how to use it to get the best cascading schedule. To
calculate the shortest cascading schedule, the grid head of s0
initiates a dynamic programming computation by broadcasting a
request message, which includes T0, t0, the redundant sensor sr,
E0, and Emin0, where E0 and t0 are set to 0, and Emin0 is set to
infinity. A node si receiving the request first determines if it can be
the successor of the sender sj .If the answer is yes, it sets Ei = dij

+ Ej , Emini = min(Pi − dij,Eminj), and ti = Tj + tj − dij/speed. Then,

it rebroadcasts Ti, ti, sr, Ei and Emini, and remembers its prede-
cessor sj . If a node sj receives several such messages, it will
choose the one from sk which can minimize Ej, whichis the energy
consumption of the shortest cascading schedule from sj to s0.
Then, sj calculates the other fields of the message, broadcasts the
message and sets its predecessor to be sk. is shown in Fig. . To
calculate the best cascading schedule, we only need to execute
the distributed calculation of the shortest schedule iteratively simi-
lar to the algorithm shown after the following modifications: The
minimum remaining energy calculated in the previous iteration,
Emin0 is attached. When si receives message from sj , it will

check whether Pi − dij _ Emin0. If yes, si and sj cannot be the

successor and predecessor of each other. In addition to the cur-
rent predecessor, each node also needs to record the predeces-
sor in the previous iteration.

Acknowledgement
We would like to thank our Inspiration our principle Dr. Sidharth
ladhake sir, our project Guide Dr. P.R. Deshmukh Sir, and all
teacher staffs and friends who supported us for the completion of
project.

Deshmukh P.R. and Wasankar S.W.

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

Bioinfo Publications 15

References
[1] Jeff Burke, Deborah Estrin, Mark Hansen, Andrew Parker,

Nithya Ramanathan, Sasank Reddy and Srivastava M.B.
(2006) ACM Sensys World Sensor Web Workshop, Boulder,
Colorado, USA.

[2] Sensorplanet. http://www.sensorplanet.org/.
[3] Carlo Ratti, Andres Sevtsuk, Sonya Huang, and Rudolf Pailer.

http://senseable.mit.edu/graz/.
[4] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen,

Michel Goraczko, Miu A.K., Eugene Shih, Hari Balakrishnan,
and Samuel Madden (2006) 4th ACM SenSys, Boulder, CO.

Building A Sensor Network of Mobile Phones and Sensor Relocation

BIOINFO Sensor Networks
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012

