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Abstract- All Mobile phones have a microphone, and most have a camera. Other sensors can be connected to a phone using Bluetooth. 
Mobile phones are connected to a network. They have a power supply, based on human user initiated charging.Some Technique providing 
efficient methods for the sensor nodes to make their data available to the network, allowing the sensor network applications to access the 
data from potentially disconnected and highly mobile devices. We demonstrate an initial system prototype that addresses some of these 
concerns. Recently there has been a great deal of research on using mobility in sensor networks to assist in the initial deployment of nodes. 
Mobile sensors are useful in this environment because they can move to locations that meet sensing coverage requirements. This paper 
explores the motion capability to relocate sensors to deal with sensor failure or respond to new events. We define the problem of sensor 
relocation and propose a two-phase sensor relocation solution redundant sensors are first identified and then relocated to the target loca-
tion. We propose a Grid-Quorum solution to quickly locate the closest redundant sensor with low message complexity, and propose to use 
cascaded movement to relocate the redundant sensor in a timely, efficient and balanced way. 
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Introduction 
Such mobile devices as sensors has a significant advantage over 
unattended wireless sensor networks in that deploying the sens-
ing hardware and providing it with network and power is already 
taken care of. Secondly, mobile phones can provide coverage 
where static sensors are hard to deploy and maintain. No single 
entity may have the access rights to place sensors across the 
complete coverage domain required by an application, such as a 
combination of subway stations, public parks, and shopping malls. 
Thirdly, each mobile device is associated with a human user, 
whose assistance can sometimes be used to enhance application 
functionality. For instance, a human user may help by pointing the 
camera appropriately at the target object to be sensed. Our goal 
is to enhance the utility of the existing swarm of mobile devices by 
presenting it as a physical sensing substrate that sensor network-
ing applications may program for their sensing objectives. Several 
applications can be enabled using sensor networks of mobile 
phones. 

 
 
 
 
 

 
 
 
 

System Description 
We build a sensor network of mobile phones that is used as a 
shared system, as opposed to a system where a single applica-
tion owns and uses a dedicated set of mobile device carried by 
users or vehicles directly involved with that application. In the 
shared the phones are carried and used by their respective own-
ers as they need. The sensor networking applications use the 
mobile devices when available. The key advantages of a shared 
system come from the vast coverage expanse achieved that a 
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single dedicated system may never be able to match, and the re-
use of physical resources by multiple applications. The related 
trade-offs are difficulty in providing performance guarantees and 
limitations in control of the sensor nodes. 
 
 
 

 
 
 
 
 
 
 
 

Fig. 1- A shared sensor network of mobile phones 
 

The system (Figure 1) consists of the following key entities: 
1. Sensors: mobile devices that sense the physical world 
2. Network Infrastructure: In our system, this includes: a data 

repository that stores all the sensor data provided by the mo-
bile devices, a tasking server that enables applications to pro-
gram the sensor network as per their requirements, and a 
sensor proxy that allows disconnected operation for sensors 
while making their data available to applications. 

3. Users: the applications that access our shared sensor net-
work, or human users who access the sensor data through a 
graphical user interface We demonstrate the following aspects 
of this system. 

 
Sensor Data Sharing 
We have developed a data sharing framework that makes the 
sensor data from mobile devices available to network applications. 
The mobile devices may be only sporadically connected, or stay 
behind firewalls. The first is a publishing client on the mobile 
phone that collects samples from the sensors on the phone, ap-
plies predefined filters to the data, buffers the data locally, and 
uploads the data as per network availability using a web service 
interface. This client runs in parallel with other applications on the 
phone and can be activated or deactivated as necessary. The 
client allows the user to configure whether data may be automati-
cally collected or only when the user initiates a sample capture. 
The client also includes functionality that allows remote applica-
tions to program the phones, as described later.  
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2- Wireless Network 

We have developed the client software GUI to use only the phone 
keypad and the small phone screen. The second component is the 
data repository which hosts the web service to accept data sam-
ples from the phones and uses a database to index the uploaded 
data. The third component is a sensor proxy that acts as an online 
representative for the mobile sensors. This proxy provides a fixed 
sensor URL that can be used by applications to access a specific 
sensor device directly.  

 
Location Based Indexing 
A salient feature of the mobile phone sensor network is that each 
sensor node is mobile and the motion pattern cannot be easily 
controlled. Most applications are unlikely to be interested in the 
data collected by a specific device but rather need data from a 
specific region and time window. The device identities of the de-
vices that contributed that data may only be of secondary im-
portance. Thus, it is very important to index the uploaded data by 
location and time. This also helps applications avoid any over-
heads in discovering specific mobile phones, tracking their motion, 
or waiting for the device to be connected to the network. 
In our prototype we obtain location information using: 
1. Cell-tower triangulation: The cell-phone network typically 

knows the location of a phone using signal strength measure-
ments from one or more cellular base stations.  

2. Phone GPS: Many recently released and forthcoming mobile 
phones have built in GPS receivers. The GPS based location 
information is accurate to several meters when the phone has 
good GPS satellite visibility, such as under open sky. We use 
GPS location also in our prototype.  

 
Programing  
Our system enables sensor network application developers to 
deploy their applications without ever deploying a physical sensor. 
Instead, the developers may program our shared mobile phone 
sensor network to carry out required sensing tasks. This is ena-
bled using the tasking server that is part of the network infrastruc-
ture. We allow mobile phone users to share their sensing re-
sources to varying degrees based on their resources and involve-
ment in the sensor network application. We also allow the applica-
tions to program the network without knowing the identities of any 
specific devices in their region of interest or the device capabili-
ties. The tasking server presents the sensor network as a single 
object to the applications. Applications can call this object’s meth-
ods to carry our their required sensing tasks, specifying their spati-
otemporal region of interest, measurement tolerances, and delay 
constraints. 
 
Sensor Location 
In addition, once deployed, sensor nodes may fail, requiring nodes 
to be moved to overcome the coverage hole created by the failed 
sensor. In these scenarios, it is necessary to make use of mobile 
sensors which can move to provide the required coverage. One 
example of a mobile sensor is the Robomot. These sensors are 
smaller than 0.000047m3 and cost less than 150 dollars. In this 
paper we address the problem of sensor relocation. 
 
Related Work 
There have been several research efforts on deploying mobile 

BIOINFO Sensor Networks 
ISSN: 2249-944X & E-ISSN: 2249-9458 Volume 2, Issue 1, 2012 

Building A Sensor Network of Mobile Phones and Sensor Relocation 



Bioinfo Publications   12 

 

sensors. For example, the work in assumes that a powerful cluster 
head is available to collect information and determine the target 
location of the mobile sensors. Sensor deployment has also been 
addressed in the field of robotics where sensors are deployed one 
by one, utilizing the Recently, we proposed three mobility-assisted 
sensor deployment protocols where mobile sensors move from 
densely deployed areas to sparse areas to increase the coverage. 
The protocols run iteratively In each round, sensors first detect 
coverage holes around them by utilizing the Voronoi diagram If 
coverage holes exist, sensors decide where to move to heal or 
reduce the holes by three different distributed algorithms called 
VOR, VEC and Minimax.  
 
Problem Statement 
In theory, the two protocols we previously proposed can be used 
for sensor relocation. For example, after a sensor failure, the sen-
sors neighboring the failed node can execute the algorithms. After 
several rounds, the neighbor sensors will move to cover the area 
initially covered by the failed sensor. However, moving neighbor 
sensors may create new holes in that area. To heal these new 
holes, more sensors must move. In addition, since many sensors 
are involved, it may take a long time for the algorithm to terminate. 
Based on this observation, we propose to first find the locations of 
the redundant sensors, and then design an efficient route for them 
to move to the destination. To determine which sensor(s) is redun-
dant is a challenging problem. It is hard for a single sensor to 
independently decide whether its movement will generate a cover-
age hole. problems: finding the redundant  
 
 
 
 

 
 
 
 
 
 

Fig. 3- System model (manually) 
 
Sensors and then relocating them to the target location. Fig. illus-
trates the sensor relocation problem when grids are used; the 
black nodes are used to represent grid heads. Each grid is in-
dexed by a tuple, whose first number is used to represent the 
column and the second number is used to represent the row. 
Grids (1,3), (0,3), (1,4) and (0,4) have redundant sensors. When a 
sensor at grid (3,0) dies, resulting in a coverage hole, its grid head 
first needs to locate the redundant sensor and then relocate some 
sensor to fix the coverage hole. For the first problem, we propose 
a Grid-Quorum solution to quickly identify the redundant sensors. 
For the second problem, we propose a cascaded movement solu-
tion to relocate sensors in a timely and energy efficient way. 
 
Finding The Redundant Sensor 
In this section, we first give the background and motivation of the 
Grid-Quorum idea. Then, we present the detailed solution and 
illustrate its advantage in terms of message complexity and re-
sponse time. 

Background and Motivation 
The problem of finding redundant sensors has some similarity to 
the publish/subscribe problem where the publisher advertises 
some information and the subscriber requests the information. 
Mapping the terminology to our problem, the grids that need more 
sensors are the subscribers, and the grids that have redundant 
sensors are the publishers. In the publish/subscribe system, the 
matching of a request to an advertisement is called matchmaking. 
Generally, there are three types of solutions for matchmaking. 
(1) Matchmaking occurs at the subscriber, which is referred as 
“broadcast advertisement” . In our problem, this is similar to letting 
the grids having redundant sensors flood this information. Later, 
when some grid needs redundant sensors, 
it can get the information quickly. 
(2) Matchmaking occurs 
at the publisher, which is referred as “broadcast request” 
In our problem, this is similar to letting the grids that need sensors 
flood the request. The grid that has redundant sensors replies 
after receiving the request. (3) Matchmaking happens in the mid-
dle of the network In our problem, this is similar to letting the sup-
ply grid advertise the information to some intermediate grids from 
which the demand grid obtains the information. Different from the 
traditional publish/subscribe problem, the information in our sys-
tem is not reusable. The information about the redundant sensor 
can only be used once, since it may be changed after the redun-
dant sensor moves to the requesting place. Due to this special 
property, the message complexity will be very high if we use the 
broadcast advertisement approach, which requires two network-
wide broadcasts for each redundant sensor: one for advertisement 
and the other for data update after the redundant sensor moves 
column. For example, suppose grid (0,3) has redundant sensors, 
it only sends the advertisement to grids in a row ((0,3), (1,3), (2,3), 
(3,3), (4,3)) and a column ((0,4), (0,3), (0,2), (0,1), (0,0)).When 
grid (3,0) is looking for redundant sensors, it only needs to send a 
request to grids in a row ((0,0), (1,0), (2,0),(3,0), (4,0)) and a col-
umn ((3,4), (3,3), (3,2), (3,1), (3,0)). The intersection node (0,0) 
will be able to match the request to the advertisement. Suppose N 
is the number of grids in the network. By using this quorum based 
system, the message overhead can be reduced from O(N) to O
(pN). Although the message overhead is very low compared to 
flooding, we can further reduce the message overhead by observ-
ing the specialty of our problem. 
 
The Grid-Quorum Solution 
In our Grid-Quorum system, we do not require the intersection of 
any two quorums. Instead, we deploy two coterie, called supply 
coterie and demand coterie separately, and only require that the 
quorum belong to the supply coterie intersects with all quorums in 
the demand coterie, and vice versa.To construct a Grid-Quorum, 
the grid heads belong to the grids in one row are organized into 
one quorum, called supply quorum and the grid heads belong to 
the grids in a column are organized into one quorum, called de-
mand quorum. We can see that using the geographic information 
reduces the cost of building Grid-Quorum to almost zero. Still 
Grids (0,4), (1,4), (0,3) and (1,3) have redundant sensors, while 
grid (3,0) needs more sensors. The grid head of (1,3) propagates 
its redundant sensor information through its supply quorum ((1,4), 
(1,3), (1,2),(1,1), (1,0)). The grid head in grid (3,0) searches its 
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demand quorum ((0,0), (1,0), (2,0), (3,0), (4,0)). Grid (1,0) can 
reply the information about redundant sensors. 
 
 
 
 

 
 
 
 
 

Fig 4- Stopping criteria 
 
and radius of the distance between sa and sc must be farther to 
sc than sa. Cluster head of grid (3,0) attaches the location of sa in 
the requesting message before forwarding it. When the grid head 
in grid (2,0) receives the request message, it will not forward it 
further since no closer redundant sensor can be found.. compares 
the performance between the Grid-Quorum solution and the 
“Broadcast Request” method in a 10_10 grid. The results were 
obtained from a simple ns2 simulation; more details on the simula-
tion environment are given later. Cluster heads of neighbor grids 
communicate through a gateway sensor. Suppose there is no 
other traffic in the network. From the figures, we can see that the 
Grid-Quorum solution can significantly reduce the message com-
plexity compared to the “Broadcast request” approach. 
 
Sensor Relocation 
General Idea: Cascaded Movement 
Having obtained the location of the redundant sensor, we need to 
determine how to move the sensor to the target location 
(destination). Moving it directly to the destination is a possible 
solution. If the redundant sensor is 100 meters away and it takes 
at least one minute for the sensor to reach its destination, the 
application requirement cannot be met. Moreover, moving a sen-
sor for a long distance consumes too much energy. If the sensor 
dies shortly after it reaches the destination, this movement is 
wasted and another sensor has to be found and relocated. We 
propose to use a cascaded movement to address the problem. 
The idea is to find some cascading (intermediate) nodes, and use 
them for relocation to reduce the delay and balance the power. 
redundant sensor s3 move directly to the destination, s1 and s2 
are chosen as cascading nodes. As a result, s3 moves to replace 
s2, s2 moves to replace s1, and s1 moves to the destination. 
Since the sensors can first exchange communication messages 
(i.e., logically move), and ask all relevant sensors 
a. Message complexity 
b. Response time 
(physically) move at the same time, the relocation time is much 
shorter. A node si which moves to replace another node sj, is 
referred to as sj ’s successor, and sj is referred to as si’s prede-
cessor. In Fig. s3 is s2’s successor and s2 is s3’s predecessor. 
We also introduce a virtual node s0, which is used to represent 
the target location. It may represent the failed sensor or the loca-
tion where an extra sensor is needed to increase the sensing 
accuracy. In Fig. we say s0 is s1’s predecessor and s1 is s0’s 
successor. Selecting cascading nodes is not easy since the sen-
sor nodes may be used by some application and their movement 

may affect the sensing or communication tasks they are perform-
ing. To ensure that this effect is within application’s requirement, 
each sensor si is associated with a recovery delay Ti. After si’s 
movement, its successor must take its place within Ti. Ti is deter-
mined by the application based on the critical level of si’s sensing 
task, the size of the coverage hole generated by si’s movement, 
and other application factors. We use T0 to represent the recovery 
delay of the relocation event. It can bethe maximum recovery 
delay of the failed sensor or the time limit for an additional sensor 
being placed at s0. The T value imposes restrictions on the spatial 
relationship and departure time of the cascading nodes. We use ti 
to denotethe departure time of si and dji to denote the distance 
between si and sj . The following Inequality must be satisfied if sj 

is si’s successor. dji/speed − (ti − tj) _ Ti (1) For simplicity, ti is 

normalized to be the time period after the relocation request is 
sent and t0 (for s0) is set to be 0. Based on Inequality (1), whether 
sj can be the the successor of si is not determined solely by its 
distance to si, but also si’s departure time. If si moves at t0 (0), sj 
must be within speed _ Ti from si; if si moves after another t 
minutes, sj can be farther away from si as long as dji _ speed _ 
(Ti+t). Whether si can stay at its place for this t minutes or must 
move immediately is determined by its own predecessor. For 
example, if si is the successor of s0, and di0 is shorter than 

speed_T0, si can flexibly move between (0, T0−di0/speed). In this 

case, we normally 
 
The Metrics to Choose Cascading Nodes 
The cascading schedule should minimize the total energy con-
sumption and maximize the minimum remaining energy so that no 
individual sensor is penalized. However, in most cases, these two 
goals cannot be satisfied at the same time.  
 
 
 
 

 
 
 
 
 

Fig. 5- 
 

As shown in Fig.5 suppose all sensors have the same amount of 
power. Choice1 consumes less energy, but the involved sensors 
will have lower remaining energy. Sensors in Choice2 have higher 
remaining energy, but the total energy consumption of Choice 2 is 
higher than that in choice1. There is a tradeoff between minimiz-
ing the total energy consumption and maximizing the minimum 
remaining energy, and we want to find a balance between them. 
Before presenting our solution, we first show some observa-
tions.Based on the sensor deployment result generated by run-
ning VOR, we randomly choose some sensor and deplete its en-
ergy. Then, all cascading schedules to recoverthe failed sensor 
are enumerated and compared in terms of the total energy con-
sumption and the minimum remaining energy. Here, the recovery 
delay (Ti, i 6= 0) is relaxed for better observation, but the reloca-
tion time (T0) is calculated for reference. The cascading sched-
ules which are worse than some other schedule in both metrics 
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(total energy consumption and minimum remaining energy) will be 
ignored; that is, only keep the cascading schedules which perform 
better than others at least in terms of one metric. Fig. shows the 
total energy consumption and the minimum remaining energy of 
these schedules in an increasing order. As shown in the figure, 
the total energy consumption is almost flat at the beginning and 
then significantly increased, whereas the minimum remaining 
energy has a steep increase at the beginning and then becomes 
flat. This new metric can be explained in a mathematical way. 
Suppose there are two cascading schedules with E1 and E2 as 
their total energy consumption, and Emin1 and Emin2 as their 
minimum remaining energy. Schedule 1 is chosen since E1 

−Emin1 _ E2 −Emin2. This inequality can also be expressed as 

E1−E2 _ Emin1−Emin2; i.e., the cascading schedule with more 

advantage and less disadvantage should be chosen. 
 
 
 
 
 
 
 

 
Fig. 6- 

 
In Fig 6. moving s3 directly to the target location is the most ener-
gy efficient solution. However, in this way, s3 will be penalized, 
and its minimum remaining energy will be significantly reduced. If 
s1 is added as a cascading node, the load of s3 can be shared 
and the minimum remaining energy can be improved. Since the 
total length of the zigzag line s3s1s0 is only a little bit longer than 
the length of s3s0. 
 
Algorithm 
Before presenting the algorithm for calculating the best cascading 
schedule, we first introduce some notations, and describe how to 
modify Dijkstra’s algorithm to calculate the shortest cascading 
schedule. The sensor network can be modeled as a complete 
weighted graph G(V,E), where vertices correspond to the sensor 
nodes. There are edges between any pair of nodes, and the 
weight of edge sisj is the distance between si and sj . The remain-
ing power of si before relocation and after relocation is denoted by 
Pi and P0 i separately. We represent the energy as the distance 
that the sensor can move with this energy. In this way, if si moves 

to sj in the relocation, P0 i = Pi − dij . To calculate the shortest 

cascading schedule, we cannot simply apply Dijkstra’s algorithm 
due to the constraint of the 
 
Modified Dijkstra’s 
To calculate the best cascading schedule, we first calculate the 
shortest cascading schedule and record its total energy consump-
tion E and its minimum remaining energy Emin. Then, we delete 

all the edges sisj if Pi − dij _ Emin and a new graph is generated. 

This process continues and a new shortest cascading schedule is 
calculated as long as the difference between the total energy 
consumption and the minimum remaining energy is increased 
compared to the previously calculated cascading schedule. When 
the process terminates, the schedule calculated before the last 

schedule is 
 
Modified Dijkstra’s Algorithm 

Initialization: E = 0, Emin = −2, E0 = 0, Emin0 = −1 

while (1) 
1. find the shortest cascading schedule using 
the Modified Dijkstra’s algorithm 
2. record the minimum remaining power as Emin0 

3. delete all edges sisj if Pi − dij _ Emin0 

4 if E0 − Emin0 < E − Emin then 

E = E0,Emin = Emin0 
else 
return the previously calculated schedule the best schedule, i.e., 
the schedule with the smallest difference between the last two 
schedules As shown 
 
 
 
 
 
 

 
 

Fig. 7- 
 

Distributed Protocol 
In this section, we describe how to implement the algorithm pre-
sented above in a distributed way. We first present a distributed 
protocol to calculate the shortest cascading schedule and then 
describe how to use it to get the best cascading schedule. To 
calculate the shortest cascading schedule, the grid head of s0 
initiates a dynamic programming computation by broadcasting a 
request message, which includes T0, t0, the redundant sensor sr, 
E0, and Emin0, where E0 and t0 are set to 0, and Emin0 is set to 
infinity. A node si receiving the request first determines if it can be 
the successor of the sender sj .If the answer is yes, it sets Ei = dij 

+ Ej , Emini = min(Pi − dij,Eminj), and ti = Tj + tj − dij/speed. Then, 

it rebroadcasts Ti, ti, sr, Ei and Emini, and remembers its prede-
cessor sj . If a node sj receives several such messages, it will 
choose the one from sk which can minimize Ej, whichis the energy 
consumption of the shortest cascading schedule from sj to s0. 
Then, sj calculates the other fields of the message, broadcasts the 
message and sets its predecessor to be sk. is shown in Fig. . To 
calculate the best cascading schedule, we only need to execute 
the distributed calculation of the shortest schedule iteratively simi-
lar to the algorithm shown after the following modifications: The 
minimum remaining energy calculated in the previous iteration, 
Emin0 is attached. When si receives message from sj , it will 

check whether Pi − dij _ Emin0. If yes, si and sj cannot be the 

successor and predecessor of each other. In addition to the cur-
rent predecessor, each node also needs to record the predeces-
sor in the previous iteration. 
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