
Journal of Information Systems and Communication, ISSN: 0976-8742, Volume 1, Issue 2, 2010, pp-07-09

7
Copyright © 2010, Bioinfo Publications
Journal of Information Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Vol. 1, Issue 2, 2010

Cache oblivious algorithm: Sequential processing

Korde P.S.

1*
 and Khanale P.B.

2

1
Department of Computer Science, Shri Shivaji College, Parbhani (M.S.) India,

korde.parmeshwar@rediffmail.com
2
Department of Computer Science, Dnyopasak College, Parbhani (M.S.) India,

prakash_khanale@hotmail.com

Abstract- Hardware implements cache as a block of memory for temporary storage of data likely to be
used again. Cache Oblivious Algorithm are typically analyzed using an idealized model of cache, but it is
much easier to analyze than a real cache’s characteristics. But in many cases a constant factor is
provably with in a more realistic cache’s performance. In this paper an efficient technique is proposed to
manage cache memory by using sequential processing. The processed technique introduces some
modifications on well-known cache oblivious algorithm process. The proposed processing technique
accomplished improved results.
Keyword: Cache Memory, Cache oblivious, Cache hit, Cache miss, Tag etc

Introduction:
A Cache Oblivious Algorithm is designed to
exploit the CPU cache without having the size
for cache or the length of the cache lines etc
as n explicit parameter where n is the number
of cache lines. Cache Oblivious was conceived
by Charles E. Leiserson as early as 1996 and
first published by Harald Prokkop in his master
thesis at Massachusetts Institute of Technology
in 1999. The Cache Oblivious Algorithm is a
simple and elegant model to design algorithm
that perform well in hierarchical memory
models ubiquitous on present Hardware
platforms. This model was first formulated in
[M. Frigo Charles E. Leiserson. H Prokop and
S. Ramachandaran Oct 1999] and since this is
the topic of research.
A Cache memory is divided into blocks of
words referred to usually as lines. A part of the
addresses of requested word called tag, is
stored together with the line. This facilitates
and accelerates the process at accessing
cache to find out whether a line already exist in
or not. This process is termed as cache
interrogation [A.Seznec, July 1997]. In addition
, each line or set in the cache is given an
identifier called index; the CPU address is
accordingly divided into index and Tag. Tags
are used to distinguish between lines[Lindia
Null and Julia Lobour, 2006].

Previous work
Optimal Cache Oblivious Algorithms are known
for the Cooley-Tukey FFT algorithm, matrix
multiplication, sorting, matrix transposition
and several other problems. Typically a Cache
Oblivious Algorithm works by a recursive Divide
and Conquer algorithms, where the problems
are divided into smaller and smaller sub-
problems. The Cache Oblivious Algorithm is
given in algorithm Fig 1.1
The Complexity of algorithm is:

Complexity= Q(n,L,Z)
Where Z- total words, L are number of Lines, n
number of cache misses that executes. The
algorithm gives us Hit and Miss ratio. We have
modified the above algorithm via sequential
access of processing to maximize the Hit ratio.

 Cache Oblivious Algorithm

T:Tag
I: Index Address
L: Cache Memory Line
L.T : Tag of line
Comp.: Complement of
LRU: Least Recently used Replacement
Algorithm
Input : A Set of CPU-generated address
c(Cache)
Output: Hit and Miss percentage
Hit=0
Miss=0
for each address
 found=’true’
 calculate I(Index address)
 calculate T(Tag)
for cache Line in the Set referenced by (L)
 if L.T and L.S =01 then
 Hit = Hit+1
 found = ‘true’
 Endif
 Endfor
 (Algorithm fig 1.1)

Cache Oblivious Algorithm

for each address
 found=’true’
 calculate I(Index address)
 calculate T(Tag)
 for cache Line in the Set referenced by
(L)
 if L.T and L.S =01 then
 Hit = Hit+1
 Add array[T]
 found = ‘true’
 Endif
 Endfor
 (Algorithm fig 1.2)

In Algorithm fig1.2 modified technique

we just transfer the number of Tags into single
array.

Cache oblivious algorithm: Sequential processing

Journal of Information Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Vol. 1, Issue 2, 2010

Optimization Technique
The Object Oriented Programming (OOP) tool
C++ and C are used to implement the
proposed Cache Oblivious Model. Matrix
Multiplication is one of the most studied
computational problem. We are giving two
matrices of m x n and n x p and we want to
compute the matrix m x p size. The output is
 n
 Zi,j = Σ xik ykj

 K=1
We construct a suite of simple test to decrease
the cache miss ratio. Let us consider proposed
modified algorithm for two matrices of size m x
n and n x p. Each element of the matrix is
stored in another single array. The different
matrix elements execute in proper manner and
gives exact or perfect results. In fig 1.3 we
required counter to find the value of last
location of first matrix element.

This modification technique converts the two
dimensions into single dimension. It is easy to
manipulate different matrix transformation
operations. At the time execution the above
matrix will be algorithm fig 1.4

In fig 1.4 The second matrix of first element it is
started as value of c2. It is easy to operate
different operations.

Fig 1.5 Output of Algorithm 1.1
Total
items

Hit Miss

Xi Xj Xi Xj

09 03 01 08 08
16 04 01 15 15

25 05 01 24 24
36 06 01 35 35

Fig 1.5 Output of Algorithm 1.2

Total
items

Hit Miss

Xi Xj Xi Xj

09 09 09 0 0

16 16 16 0 0
25 25 25 0 0

36 36 36 0 0

Fig. 1.6- Graphical Representation of
Algorithm 1.1

Fig. 1.6- Graphical Representation of
Algorithm 1.2

Conclusion
We present here problem of number of cache
misses done by an implementation optimal
oblivious algorithm implementation. In
Algorithm fig 1.1 the ratio of misses n: n

2
but in

proposed technique fig 1.2 it gives us perfect
results. The limitation of proposed technique is
it is used only for limited data or information; it
is not used for varity of wide and huge data or
information.

Future Work
Sorting String in Cache Oblivious Algorithm
Model is still open. Optimal shortest path and
minimum spanning forest still need to be
explored in the model.

Reference

[1] Aggarwal A., Alpern B., Chandra A. K.
and Snir M. (1987) In Proc. 19th
Annu. ACM Sympos. Theory Comput.,
pages 305-313.

[2] Aggarwal A., Chandra A. K. (1988) In
Proc. 20th Annu.ACM Sympos.
Theory Comput., pages 173-185.

[3] Aggarwal A., Chandra A. K. and Snir
M. (1987) In Proc. 28rd Annu. IEEE

Korde PS and Khanale PB

Journal of Information Systems and Communication, ISSN: 0976-8742 & E-ISSN: 0976-8750, Vol. 1, Issue 2, 2010

Sympos. Found. Comput. Sci., pages
204-216.

[4] Aggarwal A. and Vitter J. S. (1988)
Commun. ACM, 31:1116-1127.

[5] Seznec A. (1997) A technical Report
No. 1114, IRISA-INRIA, Campus de
Beaulieu.

[6] Barry Wilkinson (1996) Computer
Architecture, second edition, Prentice
Hall.

[7] Alpern B., Carter L. and Feig E.
(1990) Uniform memory hierarchies.
In focs, pages600-608.

[8] Amato N. M. and Edgar A. Ramos.
(1996) In Proc. 12th Annu. ACM
Sympos. Comput. Geom., pages 166-
175.

[9] Lindia Null and Julia Lobour. (2006)
The essentials of Computer
Organization and Architecture second
edition, Jones and Bartlett.

[10] Bender M. A., Duan Z., Iacono J. and
Wu J. (2002) In Proceedings of the
13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA),
pages 29-38.

[11] Frigo M., Charles Leiserson E.,
Prokop H. and Ramachandaran S.
(1999) In Proc 40

th
 Annual

Symposium on Foundation of
Computer Science.

[12] Brodal G. S. and Fagerberg R. (2002)
In Proc. 13th Annual International
Symposium on Algorithms and
Computation, Lecture Notes in
Computer Science.

[13] Brodal G. S., Fagerberg R. and
Fagerberg R. (2001) Technical Report
BRICS-RS-01-36, BRICS, Department
of Computer Science, University of
Aarhus.

[14] Chatterjee S. and Sen S. (2000)
Cache-e_cient matrix transposition. In
HPCA, pages 195-205.

[15] Chiang Y.-J., Goodrich M. T., Grove
E. F., Tamassia R., Vengro D. E. and
Vitter J. S. (1995) In Proc. 6th ACM-
SIAM Sympos.Discrete Algorithms,
pages 139-149.

[16] Coppersmith D. and Winograd S.
(1990) Journal of Symbolic
Computation, 9:251-280.

[17] Cormen T. H., Leiserson C. E. and
Rivest R. L. (1990) Introduction to
Algorithms. MIT Press, Cambridge,
MA.

[18] Eiron N., Rodeh M. and Steinwarts I.
(1998) In 2nd Workshop on Algorithm
Engineering, volume 16,pages 98-
109.

[19] Frigo M. (1999) In PLDI'99 |
Conference on Pro-gramming
Language Design and
Implementation, Atlanta, GA.

[20] Frigo M. (1999) Portable high-
performance programs. Technical
Report MIT/LCS/TR-785.

[21] Frigo M., Charles E. Leiserson,
Prokop H. and Ramachandran S.
(1999) In Proc. 40th Annual
Symposium on Foundations of
Computer Science.

[22] Mathias Spjuth, Martin Karlsson and
Erik (2003) Licentiate Thesis 2003-
009, Department of Information
Technology, Uppsala University.

[23] Hill M.D. (!987) A PhD thesis
presented to the University of
California,Berkeley.

[24] Graham R. L., Knuth D. E. and
Patashnik O. (1989) Concrete
Mathematics. Addison-Wesley,
Reading, MA.

[25] Hennessy J. L. and Patterson D. A.
(1990) Computer Architecture: A
Quantitative Ap-proach. Morgan
Kaufmann Publishers, Inc.

[26] William Stallings (2006 Computer
Organization and Architecture,
seventh edition,Prentice Hall.

