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Abstract – The strategy of brain function replacement therapy is to restore the biological neuronal network by circumventing 
the damaged tissues with biomimetic neural models through innovative stimulation strategies.  The computation capability of 
the artificial neural networks can be enhanced by incorporating neuronal characteristics.  We propose a neural network 
paradigm using novel activation function that enables both sub-threshold linear dynamics and nonlinear supra-threshold 
spiking activities with hysteresis.  Each neural unit consists of parallel linear (RC) components and nonlinear (activation) 
components. The overall aim of this paper entails the assembling and assessment of the aforementioned network.  First, a 
novel 3D biologically-inspired activation function, obtained experimentally from rat hippocampal CA1 pyramidal neuron, is 
given.  The activation function maps the current-voltage relationship between the ionic flow and electrical potential traversing 
through cell membrane.  Second, an iterative learning rule is explained and illustrated by calculating the network’s synaptic 
weights as well as the scaling parameters in the activation function.  Finally, the signals from a coupled linear system 
(mimicking sub-threshold activities driven by Gaussian white noise) are used to validate the learning rules.  Our preliminary 
result suggests that the learning algorithm is able to obtain the appropriate synaptic weights and activation scaling factors in 

less than 10 iterations with mean square error of less than 0.01V. 
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I. INTRODUCTION     
The connectionist approach of artificial neural network 
(ANN) to information processing utilizing mathematical 
and computational representations of interconnected 
simple neural units was in many ways inspired by 
biological neural networks (BNNs). In the first generation 
of ANN, simple networks of binary neural units, each 
exhibiting either an active or inactive electrophysiological 
firing or non-firing states, were able to represent logic 
functions [1]. The state of a neural unit is determined by 
comparing its weighted input sum from multiple pre-
synaptic units to a pre-defined firing threshold. 
Subsequently, these binary thresholds were replaced by 
monotonically increasing differentiable continuous 
activation functions. Using gradient descent learning 
algorithm such as back-propagation (BP) [2], one can 
obtain the coupling parameters needed to achieve the 
desired network output. The analogous biological 
interpretation of each neural unit output is the average 
firing rate or the probabilities of generating an action 
potential (AP). Some probabilistic perspectives of 
neuronal firing can be incorporated into the ANN 
framework, reflecting the stochastic aspects of BNNs. It 
also utilizes the assumption that neurons encode their 
information in the firing rate of APs [3, 4]. The networks 
mentioned so-far are static, with the connecting weights 
emulating long-term memory properties of neurons in 
which synaptic characteristics are at their steady states.  
It was also assumed that the activation function is static.  
 

 
Neural network using individual spikes was proposed [5], 
allowing the processing of spatial-temporal information. It 
was a more biologically relevant approach as evidence of 
temporal coding was observed in the rapid cortical 
processing rate of visual information [6] and hippocampal 
pyramidal cells was found to utilize temporal as well as 
rate coding [7]. 
A major landmark in the development of neural 
computation is the emergence of spiking neural network 
[3, 8, 9]. The spiking neural networks take into account 
the times of the post-synaptic potentials, represented by a 
series of prototypical impulse-functions or pre-defined 
waveforms, similar to the Integrate-and-Fire (IF) model 
[10]. It was also suggested that spiking neural units with 
temporal coding in general would have more 
computational power than traditional sigmoidal units [11]. 
Other researchers also incorporated different biologically 
realistic properties into the design of ANNs. One such 
attempt is the inclusion of dynamic synaptic strength [12] 
and short-term plasticity [13]. The synaptic strength 
undergoes dynamic modulation on rapid timescales 
through mechanisms such as short term facilitation and 
depression. A new approach to compute the firing 
thresholds is proposed using curvature methods on the 
relationship between the transmembrane voltage (v) and 
its rate of change with time (dv/dt) [14]. 
We propose a neural network paradigm denoted as pNL 
utilizing parallel linear (RC) components and nonlinear 
(activation) components. Sub-threshold linear dynamics 
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and nonlinear supra-threshold spiking activities with 
hysteresis can be generated using this pNL network.  The 
design specifications for our pNL network include: (a) the 
artificial neural network model of the hippocampus 
capable of performing parallel processing on spatial-
temporal information under sub-threshold and supra-
threshold operating modes; (b) be able to adjust the 
normal static connective parameters (such as synaptic 
weights) and adaptively modify the dynamic properties of 
each neural unit to match the desired application.  
In this paper, we introduce how the difference 
components of the network are assembled.  Biologically 
inspired three dimensional activation function related to 
the current-voltage characteristics of hippocampal 
neurons (I-V curve).  We envision that this pNL network 
will be capable of adjusting the excitation threshold and 
other scaling parameters of the I-V activation curve to 
match the BNN of interest. Furthermore, a novel learning 
rule for the synaptic weights and activation threshold is 
proposed using back-propagation approach similar to that 
of Swiercz et al. [15] where the synaptic plasticity are 
modified based on the postsynaptic potentials.  In Section 
II, the design criteria and equations governing the pNL 
network are given.  The learning rules for updating the 
model parameters are given in Section III.  In Section IV, 
an illustrative example on using pNL to estimate the 
model parameters of a simple neuronal ensembles 
undergoing sub-threshold stimulation is given.  The 
system is assumed to obey nonlinear differential 
equations, consistent with current techniques of using RC 
circuits to model neuronal membrane behavior below 
threshold. 
 
II. MODEL DESCRIPTION 
A comprehensive neurodynamical system should have 
the following properties [16]: 
 
1) It should contain state variables (transmembrane 

potentials, ionic currents and/or membrane recovery 
variables) are continuous and are described by 
differential equations. 

2) It should contain parallel distributed structure and 
high degree of freedom for enhanced computational 
power. 

3) It must contain nonlinearity in order to create a 
realistic neural model. 

 
Most of the conductance-based models stem from the 
Hodgkin and Huxley (HH) squid axon model [17]. The 
novelty of HH’s work came from the proposition that ion 
conductance follow some nonlinear gating variables.  As a 
preliminary study, only the transmembrane potentials y(t) 
measured directly from the somas of the neurons in the 
BNN are considered. Each neural unit in the model 
represents can represent a single neuron, as illustrated in 
Fig. (1). The effect of passive propagation caused by the 
RC-ladder model of the dendrite [17] is ignored.  Each 
somatic neural unit consists of a linear component and a 
nonlinear component organized in parallel. The nonlinear 
(N-) component is characterized by the supra-threshold 

current-voltage (I-V) activation curve in the generation of 
APs.  It allows for a hysteresis where the repolarization 
path after the generation of an AP is different from the 
depolarizing wave front. The linear (L-) component 
characterized the sub-threshold membrane RC 
properties. The connections between units are similar to 
the standard recurrent neural networks with synaptic 
delay between the outputs.  
An illustration of a simple two-cell network used in this 
paper is shown in Fig. (2). Each neural unit is capable of 
receiving multiple inputs in the form of post-synaptic 
current inputs the APs of other neural units or in the form 
of injected current waveforms.  At the axon hillock, the 
input currents are added after appropriate adjustments 
from the time-constant and space-constant computation 
based on the times and locations of synapses and current 
injection sites. After processing, the post-synaptic neuron 
generates the output signal that is transmitted to the next 
neural units. No other communication pathways (gap 
junction, extra-synaptic and electric field) are considered 
in this article.  
From the Kirchhoff’s current law (KCL), we know that the 
total current flowing into any node of an electric circuit 
must equal to the total current outflow. Applying the KCL 
to any output node in our model in Fig. (2), assuming no 
self-feedback; we obtain the following coupled differential 
equation: 
 

 
 
The inputs x(t) represent the measurable transmembrane 
potentials from the pre-synaptic neural units or the 
external stimuli. The Rs and Cs parameters are the 
somatic membrane resistance and capacitance as 
measured in the hippocampal neurons [19]. The bias term 
   can be treated as the weight of a fixed external input of 

1 such that              where        . The 

parameter I is the number of input signals. The parameter 
J is the number of outputs neurons. The parameter N is 
the maximum possible number of unit delay feedbacks of 
the network.  In physical terms, the synaptic weights     

represent the feed-forward conductance (in the nS range) 
for unit j from input signal i. The feedback conductance 
    is the influence of unit k to unit j.  

We modify the differential equations proposed by 
Izhikevich [20] to represent the I-V characteristics of a 
hippocampal CA3 neuron. Two possible three-
dimensional representations are obtained.  The activation 
function maps the current-voltage relationship between 
the ionic flow and electrical potential traversing through 
cell membrane.  They were obtained from the intracellular 
recordings of the CA1 pyramidal neurons [19]. The 
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function f1 maps the value and the rate of change in the 
transmembrane potential to the net current entering the 
cell. 
 

 
 

Alternatively, the function f2 maps the value and the rate 
of change in current entering the cell to the 
transmembrane potential.  
 

 
 
Depending on the types of neurons of interest, the 
functions f1 and f2 are allowed to be scaled in various 
fashions.  Both of these functions contain regions of linear 
(sub-threshold) I-V relationship as well as nonlinear (AP) 
dynamics. In this paper, we will simplify the problem by 
allowing only linear scaling to the activation functions 
such that excitation threshold of the network can be 
altered adaptively. The three parameters (       
represent scaling factors for transmembrane potential, 
rate of change of voltage and effective current, 
respectively.   
 
III. LEARNING RULE 
A novel learning algorithm is needed for the proposed 
pNL network. The learning process involves the 
optimization of mean square error E as a function of each 
neural output. The gradients of the target signals are only 
used for the purpose of result validation but not in the 
actual error computation. 
 

 
 
where C denotes the number of training cases, J is the 
number of output units. The target of the jth unit for 

training case c is symbolized as   
 .  Currently, the 

network parameters are updated using a modified 
gradient descent method as described below. Update of 
parameters will be performed by iterative training instead 
of batch learning. 
 







Where      denotes the gradient descent step size for 

feed-forward weights,     represents the gradient descent 
step size for feedback weights. Using chain rule, we are 
able to construct the rate of change in mean square error 
with respect to network parameters 
 

 
 

 
 
The gradient of the system output with respect to system 
parameters is often required for the optimization problem. 
By differentiating Eq. (1) with respect to the feed-forward 

synaptic weights (   ), we obtain the following 
expression: 
 

 
 

When we differentiate Eq. (1) with respect to the feedback 
weights at each potential time delay, we have: 
 

 
 

Since the feed-forward weights     and the feedback 

weights    
  are independent, many terms can be 

simplified. Given, 
 

 
 

 
 

Since the input vector   is independent of any synaptic 
weights, the first three terms on the right hand side of the 
equation can be compacted into a single variable,    , 
with its elements defined as, 
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After the uncorrelated terms have been taken into 
account, we are ready to solve for output gradient 
information in the parameter space using the equations, 
 

 
 
and, 
 

 
 

The derivatives of the output with respect to system 
parameters     and     

  can be extractable by organizing 

the simplified differential equations into matrix form. 
 

 
and, 
 

 
 

where       is the matrix of system output gradient with 
respect the feed-forward weights denoted in Eq. (7), 

  
        is the matrix of output gradient with respect 

to the feedback weights in Eq. (8) after n number of unit 
delays. Notice that for these two equations, the matrix G 
is different according to Eq. (13). More specifically, 
 

     

  

 
 

The matrices A and B only contain non-zero values along 
their main diagonal elements. 
 

 
 

 
 

 
 
If the neural units contain self-feedbacks, they can be 
incorporated in matrix R quite readily by replacing the 
main diagonal elements with non-zero self-feedback 
weights. By simply solving the matrices from Eq. (16) and 
(17), a general solution of the rate of change can be 
obtained as a function of time. 
 

 
 
where   can be either    or   

  with initial conditions 

     =0 and   
    =0. The convergence criteria for 

system parameters will need to be studied. For the time 
dependent solution for D(t), it should be ensured that the 

exponents do not approach infinite, i.e. the product      
must be a strictly non-position matrix.  The solution D(t) 
can be substituted into Eq. (7) and (8) to iteratively update 
the feed-forward and feedback weights. 
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Another novel approach to this model is that the 
parameters of the activation function can also be tuned 
such that excitation threshold can be altered to match 
either sub-threshold or supra-threshold activities. This 
capability is realized similarly to the training of the 
synaptic weights. Only simple linear operations such as 
expansion and compression of the membrane potential 
and its rate of change, as well as the current are 
considered in this paper. 
 

 
 

 
 

 
 
These equations can be simplified using chain rule and by 
factoring out the unrelated terms. The partial derivatives 
of the activation f1 with respect to each of the scaling 
parameter can be obtained via a look-up table once the I-
V curve has been measured. 
 

 
 

 
 

 
 
Once the rate of change of the error term E with respect 
to each of these scaling parameters are obtained, they 
can be solved iteratively, the same way as the feed-
forward and feedback weights. 
 
IV. ILLUSTRATIVE EXAMPLE 
To validate the proposed learning rule, an artificial 
network undergoing sub-threshold activity is simulated. 
Sub-threshold activity is assumed to follow simple 
differential equations. Here we give an example on how 
the pNL was used to compare the solutions of the 
differential equations to the network outputs emulating 
observed transmembrane activities subjected to sub-
threshold random inputs after supervised learning.  To 
simulation such behavior, we test a 2 by 2 hippocampus 
model undergoing sub-threshold stimulation.  The inputs 
x(t) are Gaussian white noise signals with standard 

deviation of 5V.  The output of each neural unit is 
assumed to follow: 
 

 
 
The dynamic range for the state variables for the above 
differential equation is scaled such that they correspond 

to the sub-threshold neuronal dynamic range (±10V). 
Linear scaling of the activation function f1 was also 
incorporated. Simple gradient descent step size is chosen 
to be very small (approximately 50pS). The final range of 
synaptic weights (which may represent the synaptic 
conductance between neurons) is approximately 2nS. Fig. 
(5) illustrates the result of a successful sub-threshold 
simulation after 10 training iterations. The 2-cell pNL 
network is able to reproduce the simulated signals.  It can 
be seen in Fig. (6) that the mean square error decreases 
asymptotically as the number of training iterations goes 
up.  
 
V. DISCUSSION 
Hodgkin-Huxley (HH) [17] and the Integrate-and-Fire (IF) 
models have been combined [20] to model different 
cortical neuron types. A set of relatively simple second 
order differential equation can be coupled to represent 
network dynamics. Many artificial neural network models 
have been proposed to mimic behaviors of biological 
neural networks (BNNs). These models can be 
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categorized into two classes: static and dynamic neural 
networks. Static neural networks simulate only long-term 
memory properties of neurons in which input and output 
are at their steady state. However, static NNs such as 
McCulloch-Pitts neurons [1] cannot simulate adaptive 
properties of neurons or short-term memory, which are 
very important to spatial-temporal pattern recognition. 
However, synaptic weights are not static. The processes 
of desensitization and massager replenishment are 
essential in changing the efficiency of synaptic weights. 
This paper is inspired by the recent interest in area of 
neurodynamics in which the subject of neural network is 
viewed as nonlinear dynamical systems, and standard 
neural network models are extended to incorporate for the 
use of temporal processing. 
 
Traditionally, the main emphasis of neurodynamics is 
placed on the problem of stability. The former 
mathematical derivation of neurodynamical system 
operations were heavily relied on the assumption that the 
system converges to some steady states before new 
iterations in learning take place. However, our approach is 
different with the realization that accurate representation 
of transient dynamics is an important aspect of modeling 
as well. Our proposed network paradigm is a major 
deviation from the traditional view of neural network 
design and modeling. While traditional sigmoidal networks 
are unable to accommodate temporal information such as 
refractoriness (which is essential in neuronal behaviors), 
our highly nonlinear activation function from the I-V 
measurement allows refractoriness. In addition, recurrent 
architecture appears to be a more accurate 
representation of neuron connectivity.  
The advantages of a parallel organized nonlinear 
activation function are numerous. Its characteristics can 
be summarized into four points. First, it is inspired by 
biological measurement.  The I-V curve is directly 
measured from the hippocampus [23]; its wave shape is 
not an arbitrarily defined Dirac delta function [8, 9] 
intentionally placed at whenever the integrated synaptic 
current exceeded a hard threshold. The intrinsic 
parameters of the activation function allows for excitation 
as well as refractoriness, much similar to real neurons. 
These characteristics may also be fine-tuned to customize 
into various neuron types. Second, it is connected in a 
highly parallel manner. While traditional activation 
functions are applied in series with the path of data 
propagation in an ANN, parallel connected nonlinearity 
makes learning more difficult. Traditional learning 
paradigms of error propagation can be performed much 
easier when nonlinearity is organized in a serial manner. 
With a parallel structure, it is required simultaneous 
differential equations. Third, the activation function is 
highly nonlinear. As a result there is no simple analytic 
expression for the relations between the measured 
membrane current and voltage, one possible solution to 
this problem is to incorporate the first derivative 
information as one additional variable in describing the I-V 
characteristic. Even with this modification, gradient 
information remains difficult to compute. Taylor series 

expansion can be employed around the excitation 
threshold so that an analytical expression can be 
obtained. A look-up table approach also aids in simplifying 
the computation of the gradient descent method.  Fourth, 
it can be adapted by solving for the appropriate scaling 
factors in the activation function instead of having them 
held as constants. This has biological significance in that 
the excitation threshold of a spiking neural unit can be 
trained dynamically to match the application need. 
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Fig. 1 – A block diagram representation of an artificial neural unit as a somatic model of the hippocampal neuron. The 
dendrites are not included in this model hence the RC ladder structure is not shown. 

 

 
Fig. 2 – Schematic representation of the parallel N-L neural network model. Two neural units are connected in a recurrent 

manner. 
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Fig. 3 – Activation function used to compute gradient information, where given the transmembrane voltage at the soma and its 

derivative, one can obtain an estimate of current flow. 

 
Fig. 4 – Activation function used to compute the final output voltage from the intermediate current sum. Transmembrane 

voltage can be obtained from the amount and rate of change of total current influx. 
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Fig. 5 – Simulation of sub-threshold activities using a hippocampus neurodynamical ANN model. A detailed comparison 
between the actual output and the simulated data, illustrating that the network is able to simulate sub-threshold activities is 

shown. The solid line represents the targeted sub-threshold activities obeying simple differential equations. The dashed line is 
the network output after 10 iterations of training. 

 
Fig. 6 – Mean Squared Error versus training iterations for sub-threshold activities. 

 


