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Abstract- The public key cryptosystem (PKC) given by Rabin was as secure as factoring. This feature attracted Mayer 
et al to generate such PKC based on nonsingular cubic curve. The mathematical concept as cubic curve was quite 
popular to be used for public key by that time. The object of this paper is to propose a public key cryptosystem that is 
as secure as factoring and based on the singular cubic curve over Zn. In the scheme given by Mayer et al the size of 
ciphertext is a 5tuples. The size of ciphertext, in our proposed scheme is only 3tuples. We have shown that the 
proposed scheme is about two times faster than that of the scheme given by Mayer et al for a 2-log n bit long 
message. 
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Introduction 
Since the seminal paper given by Diffie and Hellmann 
[1], numerous public key cryptosystems have been 
proposed. The first practical and most popular public 
key cryptosystem is RSA [13] given by Ravist, Shamir, 
and Adlemann. The security of RSA is based on the 
difficulty of factoring large integer n, which is product 
of two large primes p and q. In the RSA scheme, an 
user U (1) - Chooses two large primes p & q, 
computes n = pq and (n) = (p-1)(q-1). (2) - Chooses 
a random integer e less than and relatively prime to 
(n) (3) - U then chooses an integer d such that ed  
1 mod (n). The secret key for U is (d, p, q) and the 
public is (e, n) respectively. The ciphertext as well as 
plaintext is [1, n-1]. To encrypt any plaintext M, the 
sender S computes the ciphertext as C = Me mod n. 
The ciphertext C is decrypted by computing M = 
Cdmod n. If an efficient algorithm of factoring exists, 
the attacker can break the RSA scheme easily. But it 
is not known whether there is some easier way to 
break RSA other than factoring. 
In 1979, Rabin [12] proposed a public key 
cryptosystem and digital signature based on the 
quadratic residue theory. That scheme was proved to 
be as intractable as factoring. In other words, as long 
as factorization of large integer into primes remains 
practically intractable, this scheme remains 
computationally secure. Its security is much better 
than RSA in theory, but it is susceptible to chosen 
ciphertext attack. Rabin’s original scheme has some  

 
disadvantages in practice, such as the ambiguity of 
four plaintexts to one ciphertext. This ambiguity can 
be avoided by knowledge of side information of the 
plaintext, for example: the plaintext must be in English 
words. But random key is when transmitted, there is 
no such knowledge to distinguish the four solutions. In 
practice, this problem is overcome by adding pre-
specified redundancy to the original plaintext before 
encryption. (For example character of the message 
i.e. odd or even and the Jacobi symbol of the 
message, or last 64 bits of the plaintext). Then, with 
high probability, exactly one of the four square roots of 
a legitimate ciphertext C has this redundancy. So the 
receiver can select this one as the intended plaintext. 
Williams [15] solved these problems of ambiguity 
through quadratic residue theory. Harn and Keisler [3] 
proposed to integrate coding techniques into Rabin 
cryptosystem. Their variation uses parity bits as 
redundancy. The problem of ambiguity is naturally 
solved. Because redundancy is added to solve 
ambiguity, for one identical plaintext message, the 
ciphertext in Rabin cryptosystem is longer than RSA. 
When Rabin scheme is used in signature, the 
signature is longer then RSA too. Harn and Keisler [4, 
5] proposed some variations to eliminate this 
disadvantage.  
The use of elliptic curve in cryptography was first time 
proposed by Miller [9] and independently by Koblitz 
[8]. The security of these cryptosystems is based on 
the discrete logarithm problem (DLP) in a group of 
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points on an elliptic curve. This is known as ECDLP 
problem in literature. Later, Mourer et al. [7] proposed 
a public key cryptosystem using elliptic curve over the 
ring Zn, where n is a product of two large primes. The 
security of their cryptosystem is based on the factoring 
problem for n but it is not known whether decryption is 
equivalent to factoring n. They used elliptic curve of 
special form such that the factorization of n directly 
give the order of the group. The knowledge of the 
order of group is important in the decryption process. 
The details about elliptic curve cryptosystem can be 
found in [10]. Later, Koyama [6] replaced elliptic curve 
by singular cubic curve to propose a fast RSA type 
scheme. By using the idea given by Williams [15] and 
Mourer et al [7], Meyer et al [11] proposed a public 
key cryptosystem based on elliptic curves over Zn 
whose security is equivalent to factoring n. Now, in 
this paper we propose a public key cryptosystem, 
which is as secure as factoring and based on singular 
cubic curve over the ring Zn, where n is a product of 
two large primes. The proposed system is about two 
times faster than that of the scheme given by Mayer et 
al. Also, the size of ciphertext of the scheme proposed 
by Mayer et al is a 5tuple where as in our scheme is a 
3tuple. 
 
Singular cubic curve 
 In this section, first we discuss some basic facts 
about singular cubic curve over the finite field Fp and 
the ring Zn where n is the product of two distinct odd 
primes greater then 3.  
Consider the congruence equation  
 

y2+axy = x3+bx2mod p , a ,b  Zp. (1) 

The set of all solutions (x, y)  Fp Fp to (1) denoted 
by Cp(a, b)  is  called singular cubic curve .  
Let Fp be a finite field with p elements and Fp* be the 
multiplicative group of  Fp. Clearly the order of Fp* 

denoted by Fp* = p-1. 
A non-singular part of singular cubic curve denoted by 
Cp(a, b) is defined as the set of solutions (x, y)  
FpFp to equation (1) excluding a singular point (0, 0), 
but including the “point at infinity”, denoted by . 
It is well known that the same addition laws defined by 
the chord and tangent method in the case of elliptic 
curve still holds in the singular cubic curve [14, 10]. 
For any point P  Cp(a, b),  the sum P +  is by 
definition, equal to P, which is also equal to  +P. For 
P = (x0, y0), we define – P the additive inverse of P as 
the point (x0, -y0 - ax0). The sum of P + (-P) is defined 
to be .    For     P1=  (x1, y1) and P2= (x2, y2) with 
P1P2 the sum P1+P2 = (x3 , y3) is calculated as 
follows:   
 x3 = 2 + a - b - x1 - x2        (2) 

 y3 = (x1 - x3) - y1 
Where  
 = (y2 - y1)(x2 - x1) ,  if (x1, y1)  (x2, y2)  and  
 = (3x12 +2bx1 - ay1)/(2y1+ax1)   , if (x1, y1) =     (x2 , y2) 
.  
The existence of such addition law makes Cp(a, b) a 
finite abelian group . In fact, the group structure of 
Cp(a, b) is well known [2, 14]. For any kFp the 
multiplication operation  is defined as bellow: 
   k (x ,y) = (x, y) + (x, y) + (x, y)  +….. + (x, y)  k 
times  over Cp(a ,b). 
An isomorphism between Cp(a, b) and Fp* is defined in 
[10,14] for the curves  (y - x)(y - x) = x3 over Fp*, 
where ,  Fp* , which is equivalent to equation (1)  
with  a = -  -  (mod p)  and b = -  (mod p) . When 
b = 0 we can put  = 0 and  = -a (0).  
An isomorphism mapping from Cp(a, 0) to Fp* and 
inverse of that are given in the following theorem: 
 
Theorem 2.1[10]. The mapping : Cp(a , 0)  Fp* 
defined by   
: 1 and (x, y)1 + ax/y = x3/y2 

is a group isomorphism . The group isomorphism 
mapping -1: Fp*Ep(a, 0) is defined by 
             -1:1 and v(a2v/(v-1)2, a3v/(v-1)3) 
Hence, with this isomorphism, the order of    Cp(a, 0) 
is denoted by    #Cp(a, 0) = p-1 . 
Let n be the product of two primes p and q (>3). Let Zn 
= {0, 1, 2, 3,…..n-1} and Zn* be a multiplicative group 
of Zn , we consider similarly the congruence  
y2 + axy = x3 + bx2  over Zn , a, bZn    (3)     
A non-singular part of a singular cubic curve over Zn 
denoted by Cn(a, b), is defined as the set of solutions 
(x, y)  Zn  Zn to equation (3) excluding a singular 
point which is either congruent to (0,0) modulo p or 
congruent to (0, 0) modulo q , but  including a “point at 
infinity” . By Chinese Remainder Theorem, Cn(a, b)   
is isomorphic as a group to Cp(a, b)Cq(a ,b) .  
An addition operation on Cn(a, b) is defined by chord 
and tangent method. Although the addition is not 
always defined, the probability of such a case is 
negligible small for large p and q.  
By using Theorem 2.1 and Chinese Remainder 
Theorem, the following theorem holds: 
Theorem 2.2  [2]. For (x1, y1) and (xi ,  yi) satisfying (xi ,  

yi) = i(x1, y1) over Cn(a , 0) , we have  
 
 1+axi/yi = (1+ax1/y1)i mod n  
 i.e. xi/yi = (x1/y1)i mod n   (4) 
 
Rabin Cryptosystem 
In 1979, Rabin [12] proposed a public key encryption 
and digital signature scheme. Rabin scheme is based 
on quadratic residue theory and its security is as 
intractable as factoring. In this section, quadratic 



Sahadeo Padhye 

12 
Bioinfo Publications 

residue theory is introduced and a brief introduction of 
Rabin scheme is also given. 
 
Quadratic Residue Theory 
First, we will give a brief introduction of quadratic 
residue theory.  
 
Quadratic Residue and Principal Residue 
Let p be an odd prime and u is an integer not divisible 
by p. Then u is called quadratic residue mod p if x2 = u 
(mod p) has one integer solution. Otherwise, u is 
called quadratic non-residue. QR denotes the set of all 
quadratic residues and QNR denotes the set of all 
quadratic non-residues. There are exactly (p-1)/2 
quadratic residues mod p and the same number of 
quadratic non-residues mod p. If u is a quadratic 
residue mod p then u has exactly two roots, one of 
them between 0 and (p-1)/2 and the other between (p-
1)/2 and (p-1). One of these square roots is also a 
quadratic residue mod p that is called principle square 
root. When n is composite, for u to be a quadratic mod 
n, it must be a quadratic residue modulo all the prime 
factors of n. Rabin scheme uses n = pq, where p and 
q are primes. In this case, there are exactly (p-1)(q-
1)/4 quadratic residue mod n. A quadratic residue mod 
n must be a quadratic residue (mod p) and a quadratic 
residue (mod q). One quadratic residue normally has 
four different square roots. However, certain quadratic 
residue has either p or q as a divisor. Their quadratic 
residues have just two square roots. But, if n is 
product of two large primes then only a negligible 
portion of quadratic residue has two square roots. The 
chance of these happening is very small and can be 
ignored. So each quadratic residue has exactly four 
square roots when large primes are used in Rabin 
scheme. 
Legendre and Jacobi symbol are used to describe 
whether any number is quadratic residue mod k are 
not, where k is any integer. 
 
Legendre Symbol 
Legendre symbol is defined to describe whether any 
number u is quadratic residue modulo any prime p. 
Legendre symbol, written as L(u, p) is defined when u 
is any integer and p is any odd prime.  
L(u,p) = 0   ;  if u is divisible by p 
L(u,p) = 1   ; if u is quadratic residue mod p 
L(u,p) = -1 ; if u is quadratic non-residue mod p 
 
Jacobi Symbol 
Jacobi symbol is written as J(u, n), is a generalization 
of Legendre symbol to composite. Far any integer u 
and any odd integer n, 
J(o,n) = 0 
J(u,n) = L(u, n) if n is prime 
J(u, n) = J(u,p1) J(u,p2) J(u,p3) ….. J(u, pm) 

If n = p1p2…..pm 
 
Rabin Cryptosystem 
It is interesting to observe that the security of all RSA 
type public key cryptosystems is based on difficulty of 
factoring. More precisely, it is well known that if one is 
able to factor the modulus N = pq (where p and q are 
large primes of equally size) for that system, then the 
system can be broken. However, if the system is 
broken by way of some attack than it does not 
necessarily mean that it is possible to factor into 
required primes. This became possible in the Rabin 
scheme and is called the scheme as secure as 
factoring.  
Rabin scheme gets its security from the difficulty of 
finding square roots modulo a composite number. This 
problem is equivalent to factoring. To generate keys 
the receiver chooses two large primes p and q both 
congruence to 3 (mod 4) and computes n = pq. The 
public key for the receiver R (say) is n and the secret 
keys are p and q respectively. To encrypt any plaintext 
M, the sender S (say) computes C = Me mod n and 
sends the ciphertext C to the receiver. Now, the 
receiver R who knows secret keys p and q can 
computes the square root of C as follows. R first 
computes m1= C(p+1)/4 (mod p) , m2 = (p-C(p+1)/4) (mod 
p), m3 = C(q+1)/4 (mod q), m4 = (q- C(q+1)/4) (mod q). 
Then by using the Chinese Remainder Theorem the 
receiver can computes all possible four roots of C 
under modulo n. 
One of the disadvantages of the scheme given by 
Rabin is that, corresponding to one plaintext; there are 
four possible ciphertexts. According to William [15], all 
four roots of ciphertext can be divided into two types. 
Type I with the Jacobi Symbol 1 and the type II with 
the Jacobi symbol –1. Further, each one of those 
types contains two different square roots, one even 
and the other odd. Thus, if the sender sends the 
character of plaintext M such as the Jacobi symbol of 
M under mod n and the even or oddness of M then 
receiver can easily determine which root is proper 
one. 
 
Proposed Cryptosystem 
Suppose the sender S wants to send a message pair 
(mx, my) belongs to Zn* Zn* such that mx3  my2mod n 
to the receiver R. Here n is the product of two large 
primes p and q both congruence to 3 mod 4. n is the 
public key for the receiver R and the secret keys are p 
and q respectively.  
 
Encryption Process 
To encrypt the message pair (mx, my), the sender S 
first computes the isomorphic image M of (mx, my) by 
using the isomorphism defined as above. Then, s/he 
computes the complete ciphertext   (C, a, t) as follows: 
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M = (mx3/my2) mod n  
C = M2mod n  
a  =  (mx3 - my2)/mxmy mod n  
t = 1  if   J(N, n) = 1 and M is odd 
t = -1 if   J(N, n) = -1 and M is odd 
t = 2 if   J(N, n) = 1 and M is even 
 t = -2 if   J(N, n) = -1 and M is even 
S sends the complete ciphertext (C, a, t). 
 
Decryption Process 
To decrypt the ciphertext, receiver R first determines 
all the square roots of C by using the secret keys p 
and q. Let M1, M2, M3, M4 are four square roots of the 
ciphertext C. Next, he/she first checks the Jacobi 
symbol of Mi and even and oddness of Mi for i 
=1,2,3,4. With the help of the information of t, he/she 
can ensure that which one is proper square root of C, 
i.e. the plaintext M. Now, he computes the inverse 
isomorphic image of M by using the inverse 
isomorphism. Finely, he/she gets the plaintext pair 
(mx, my). 
 
Analysis 
The cryptosystem presented in this paper is a 
generalization and improvement of the scheme 
presented in [6]. The use of small exponent 2, 
increases the speed of the encryption process. In fact, 
one exponent modulo p and one exponent modulo q 
and the use of Chinese Remainder Theorem are 
needed to get required square root. In the Koyama 
scheme [6], decryption process requires to compute, 
one exponent under modulo p and one exponent 
under modulo q and use of Chinese Remainder 
Theorem. There fore the decryption speed of 
proposed scheme is about the same as that of the 
Koyama scheme. Next, although the encryption 
process of our scheme is computationally same 
expansive than that of the scheme proposed by Mayer 
et al. [11] based on nonsingular cubic curve but in our 
scheme, 2-log n bit message is encrypted at a time 
where as, the scheme proposed by Mayer et al. [11] 
encrypts log n bit message. Hence, our proposed 
scheme is about two times faster than that of the 
Mayer et al scheme for the 2-log n bit message. In 
addition, in our scheme the size of ciphertext is a 
3tuple where as in the Mayer et al scheme it is a 
5tuple.  
Thus the advantage of our proposed scheme over 
Mayer et al scheme is that, it is about 2 times faster 
and its ciphertext is 0.6 times smaller than that of the 
Koyama scheme. The advantage over Koyama 
scheme is that, the encryption speed of proposed 
scheme is very fast than that of the Koyama scheme.  
 
 
 

Conclusion 
In this paper we proposed a public key cryptosystem 
that is as secure as factoring and based on the 
singular cubic curve over Zn. In the scheme given by 
Mayer et al the size of ciphertext is a 5tuples. The size 
of ciphertext, in our proposed scheme is only 3tuples. 
We have shown that the proposed scheme is about 
two times faster than that of the scheme given by 
Mayer et al for a 2-log n bit long message. 
 
References 

[1] Whitfield Diffie and Martin Hellmann (1976) 
IEEE Transaction on Information Theory, 
v.22, 644-654. 

[2] Husemaller D. (1987) Elliptic curves. 
Springer Verlag. 

[3] Harn L. and Kiesler T. (1989) Proc. of 
Workshop on Applied Computing’89. 

[4] Harn L. and Kiesler T., Electronics Letter 
v.25,n.15,pp 1016(1989). 

[5] Harn L. and Kiesler T. (1990) Fifth Annual 
Computer Security Applications Conference, 
IEEE Computer Society Press,  263-270. 

[6] Koyama K. (1995) Proceeding in LNCS 
EUROCYPT ’95, Springer Verlag , Volume - 
921 , PP. 329-340. 

[7] Koyama K., Maurer U., Okamoto T., 
Vanstone S.A. (1991) Crypto’91, 252-266. 

[8] Neal  Koblitz (1985) Math.Comput.48.203-
209.  

[9] Miller V. (1985) LNCS CRYPTO’85, pp 417-
426.  

[10] Menezes A. (1993) Kluwer  Acadamic 
Publisher. 

[11] Meyer Bernd and Volker Muller (1996) 
LNCS EUROCRYPT’96,v.1070, 33-38. 

[12] Rabin M.O. (1979) MIT Lab for Computer 
Science , Tech. Rep.LCS/TR 212. 

[13] Rivest R.L., Shamir A., Adlemann L. (1978) 
Communication of the ACM 1,2 ,120-126. 

[14] Silverman J.H. (1986) The arithmetic of 
elliptic curve. Graduate text in mathematics 
vol.106 . Springer Berlin. 

[15] Williams H.C. (1980) A IEEE Transaction on 
Information Theory IT-26, 726-729. 

 
 


