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Abstract- Finding drugs with traditional approaches is becoming more and more difficult especially for the need of finding targets different 
from the traditional ones, to cope unmet clinical needs. However, the increasing amount of knowledge about cross-talks between proteins in 
the cell has prompted researchers to extend the range of “druggable” targets to include protein-protein interactions. Disruptors of protein 
complexes appear as a new paradigm in the field of drug discovery and development. This approach has long been considered as extreme-
ly challenging, and to date, only few successes were achieved with some molecules modulating protein-protein interactions that are current-
ly on the market. Nevertheless, the number of inhibitors of protein-protein interactions in pre-clinical and clinical trials is increasing and this is 
encouraging for the future. 
Bioinformatics represents a valid support for scientists, and several tools and software are available practically for every field of research. 
This paper reviews those bioinformatics tools to support people in developing drug-like molecules to target protein-protein interactions, at all 
levels of this process. 
Keywords- Interactomics, protein-protein interactions, bioinformatics, drug discovery, fragment-based drug design, docking.  
Abbreviations- i-PPIs: inhibitors of protein-protein interactions; 3D: three-dimensional; SVM: Support Vector Machine; MD: molecular dy-
namics; FBDD: fragment-based drug discovery. 
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Introduction  
At the end of the 2nd millennium, a new paradigm for science has 
been developed to look at complex systems in a holistic way. 
Starting from genomics, this new approach has been extended 
soon to transcriptomics and proteomics, and soon after, proteins 
became to be considered not only as individual entities, but as 
elements interacting with each others and with other macromole-
cules within a cell. The term “interactome” appeared in literature in 
1999 [1], but a substantial increase in the interest for interac-
tomics has been registered only in the last 5 years, with the publi-
cation of a high number of papers devoted to the study of interac-
tomes in different conditions and organisms [2], including humans 
[3].  

Simultaneously with the first examples of the basic research on 
large-scale protein-protein interactions, more applicative works 
appeared in the biomedical literature, focused on the use of this 
information to find molecules acting as inhibitors of protein-protein 
interactions (i-PPIs). The increase of interest for this class of com-
pounds arose from the fact that the discovery of new drug targets 
is a constant challenge for pharmaceutical companies. In fact, 
despite remarkable efforts made to increase the chances of suc-
cess [4], there remains a significant number of unmet clinical need 
for many diseases. Thus, there is the need to expand the range of 
potential targets using new molecules with mechanisms of action 
different from the “traditional” ones (that are essentially addressed 
to the active or binding sites of single enzymes or receptors, re-
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spectively). i-PPIs appear then as a promising new class of poten-
tial therapeutic compounds. A very first example of work focused 
on the selection of new molecules able to disrupt crucial protein-
protein interactions was published in 1997 [5]. During the last 
years, studies targeted on the discovery of promising drug candi-
dates able to interfere in protein-protein interaction processes 
were intensified and some successful results were achieved (for 
reviews, see e.g. [6-12] ). In particular, active fields of research 
were focused on: i. integrins, cell surface receptors that mediate a 
variety of functions involving cell-cell interaction and communica-
tion. Two molecules (epifibatide - a peptidic molecule; tirofiban - a 
non-peptidic molecule) that target the interaction between integrin 

IIb3 and proteins such as vitronectin and fibronectin are the 
first i-PPIs that have been approved for clinical use, and are cur-
rently used in the prevention of platelet aggregation (reviewed in 
[7] ); ii. disruptors of the interaction between p53 and its inhibitor 
MDM2, which binds p53 and negatively regulates its transcription-
al activity and stability. These molecules represent an attractive 
new approach to cancer therapy, since many tumors overproduce 
MDM2 to impair p53 function (reviewed in [13] ); iii. inhibitors of 
the interaction between IL-2 and its receptor IL-2R, that have been 
investigated as potential drugs for a range of immune-cell disor-
ders (reviewed in [14] ); iv. inhibitors of the interactions of 
antiapoptotic factors Bcl-2 and Bcl-XL with other members of the 
family of critical mediators of apoptosis. These inhibitors promote 
cell death in specific pathological conditions such as cancer 
(reviewed in [15] ); v. antiinfective drugs. An i-PPI, maraviroc, 
targets the interaction between the viral protein gp120 of HIV and 
the cell receptor CD4, thus impairing the membrane fusion and the 
entry of viral particles into the cell. This i-PPI was approved for 
human use by FDA (reviewed in [16] ). Another example in this 
field is the development of i-PPIs against human papilloma virus, 
targeting the interaction between viral proteins E1 and E2, crucial 
for viral genome replication (reviewed in [17] ); vi. modulators of 
the interactions between the transcription factor c-Myc (involved in 
fundamental cellular processes such as cell cycle progression, 
growth, and oncogenic transformation, as well as apoptosis) and 
its heterodimerizing partner Max, whose interaction is crucial for 
the vast majority of c-Myc functions (reviewed in [18] ).  
Despite these and other efforts, the percentage of success in find-
ing i-PPIs that can actually be marketed as drugs in the near fu-
ture is still extremely low. The main difficulties arise from several 
factors. Most of the protein-protein surfaces are large and flat, 
therefore the interaction with a small molecule requires a high 
number of weak interactions widely spaced. On the contrary, gen-
erally the interaction between a “traditional” druggable binding site 
and a small molecule is driven by a limited number of strong inter-
actions. Protein-protein interaction surfaces are more likely to be 
topologically complex, whereas the binding sites in proteins tradi-
tionally targeted by drugs are simple-shaped pockets. Post-
translational events such as phosphorylations regulate most of the 
protein-protein interactions, but a protein site that has evolved to 
interact with a phosphorylated partner is not likely to be an attrac-
tive target, since any small molecule mimicking the charged spe-
cies would be probably too polar to show good bioavailability. 
Finally, another issue concerns the specificity of the interaction, 
that is more difficult to achieve for i-PPIs [7,9]. During the time, 
most of these problems have been overcome. However, it is unde-

niable that standard approaches such as high-throughput screen-
ings are uneffective to reach a high percentage of success if fo-
cused on the search for i-PPIs [9]. Therefore, the development of 
alternative strategies has soon become a main goal to tackle this 
problem. The knowledge of the three-dimensional (3D) structure of 
the protein-protein interaction site is obviously a great advantage, 
providing valuable insight into protein-ligand interactions, thus 
accelerating the iterative process of inhibitor design. Most of the 
successful projects have exploited this information (see e.g. [19-
23] ). Over the years, there has been a progressive rationalization 
of the research to enable the discovery of i-PPIs in a quick, effi-
cient and money-saving way, and a relevant role has started to be 
played by computer-aided drug design approaches [11].  
Bioinformatics has played a main role since the outset of interac-
tomics, providing scientists with essential tools for interpretation, 
storage and data analysis, in parallel with the massive application 
of experimental techniques [24]. For example, the first databases 
to collect data on known molecular interactions were developed 
very early, even before the term “interactome” was coined [25], 
and to date, almost 100 resources are listed in the “Protein-protein 
interactions” subcategory of the 2012 NAR Database Issue:  
http://www.oxfordjournals.org/nar/database/subcat/6/26. 
Other tools were developed for visualizing molecular interaction 
networks and biological pathways, and to integrate these networks 
with annotations, gene expression profiles and other data, allow-
ing users to manage this plethora of information in an easier and 
immediate way. The most popular of these tools is probably Cyto-
scape (http://www.cytoscape.org), an open source platform that is 
continuously developing thanks to a community-based effort [26]. 
The next goal for bioinformatics applied to the investigation of 
protein-protein interactions was the development of computational 
tools for the prediction of protein-protein interactions. The first 
computational methods were based on sequence and genomic 
information, such as the presence or absence of genes in related 
species, the conservation of gene neighborhood, analysis of gene 
fusion events, the evaluation of the similarity of phylogenetic trees 
and in silico two-hybrid methods [27]. Then, machine-learning 
approaches such as Support Vector Machines (SVM) or Random 
Forest methods were introduced [28]. Since the knowledge of the 
3D structure of the proteins adds further information, several struc-
ture-based predictive methods were then developed [29-31]. Sev-
eral challenges are still to be faced, despite notable progress dur-
ing these last years [32]. However, there is a continuously increas-
ing interest in this field, as inferred by the fact that in the last 3D-
SIG (Structural Bioinformatics and Computational Biophysics 
Meeting, a satellite ISMB/ECCB Meeting, held in Vienna on July 
2011), two out of eight sessions were devoted to computational 
approaches to study protein-protein interactions.  
During last years, computational biology has rapidly provided 
many tools to help researchers to develop i-PPIs, and it has be-
come essential for an efficient and successful project. The pur-
pose of this review is to give the reader an overview of the various 
computational strategies that have evolved over time to address 
and, hopefully, solve this problem. Since the focus of this review is 
based on drug-like molecules acting as i-PPIs, computational tools 
to design peptides and peptidomimetic able to modulate protein-
protein interactions will not be included here. However, the reader 
is referred to some excellent and recent reviews covering these 
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topics [33,34]. A schematic illustration of the different computa-
tional approaches to find i-PPIs is shown in Fig. (1).  

Fig.1- Scheme of the different computational approaches to find i-
PPIs described in the text and of their role in the discovery steps. 
Starting from a library of compounds, computational descriptors of 
chemical space (A) can help in filtering the more promising puta-
tive i-PPIs using detailed analysis of the chemical and structural 
features of these molecules. This allows to create a library en-
riched in putative i-PPIs (B), thus increasing the chances of suc-
cess for high-throughput screenings. Fragment-based drug design 
(C) is another approach by which promising fragments are bound 
together to form putative i-PPIs. Tools for the analysis of protein-
protein interfaces (D) allow to access to structural information 
about protein-protein interfaces, that can be exploited for the de-
velopment of new i-PPIs. Finally, docking (E) and, whenever pos-
sible, molecular dynamics simulations (F) allow to identify mole-
cules that would bind the protein interface, to select the most 
promising i-PPI to disrupt that interaction. 
 
Computational strategies to find i-PPIs 
Computational descriptors of the chemical space of i-PPIs 
and libraries enriched in i-PPIs 
When the data about the first i-PPIs started to be available in liter-
ature, it became evident that the chemical and structural features 
of these molecules are quite different from those of the traditional 
drug-like compounds. Due to the fact that they bind to regions 
very different from classic pockets or active sites, i-PPIs are gen-
erally larger in size than enzyme inhibitors, ion channel modula-
tors, or receptor ligands [35]. Moreover, given that several studies 
have underlined the abundance of aromatic and/or hydrophobic 
residues at the protein-protein interfaces, most of the i-PPIs con-
tain several aromatic and/or hydrophobic moieties to establish 
favourable interactions with their macromolecular targets [36]. A 
number of following studies tried to identify less empirical de-
scriptors of the physico-chemical features of known i-PPIs, in 
order to compare them with the chemical spaces covered by the 
existing libraries of chemicals, with the aid of computational tools 
(listed in Table 1, part a). Probably, one of the earliest investiga-
tions in this sense was the one performed by Pagliaro and 

coworkers. In that work, a principal component analysis was per-
formed on the basis of physico-chemical properties of the mole-
cules calculated with MOE, a package for computational chemis-
try, cheminformatics and bioinformatics (Chemical Computing 
Group Inc. Montreal, Canada, http://www.chemcomp.com). The 
analysis showed that only 50% of the 19 i-PPIs available to date 
were covered by the diversity chemical space of three popular 
commercial databases [37]. Therefore, one of the first strategies 
suggested to improve the rate of success of screening procedures 
focused on the search for promising i-PPIs was the creation of 
libraries enriched in i-PPIs [37]. Computational chemistry tech-
niques, allowing a detailed analysis of the chemical and structural 
features of these molecules, were used to help researchers in 
selecting the most promising compounds. 
In 2007, Neugebauer and colleagues used chemoinformatics and 
artificial intelligence methods to retrieve information from a collec-
tion of known i-PPIs and to develop an algorithm to discriminate 
possible i-PPIs among a group of compounds [38]. Starting from 
25 small molecules extracted from the literature and used as train-
ing set (excluding peptides and small proteins acting as i-PPIs), 
they identified descriptors for these compounds using a software 
for molecular descriptor calculations (Dragon, http://
www.talete.mi.it) [39]. Then, they built a decision tree using the 
three most relevant descriptors (related to molecular shape, num-
ber of ester functions in molecule and 3D structure of the chemical 
compound), to discriminate, among different molecules, those that 
are more likely to be i-PPIs. The final algorithm showed a good 
classification power towards the training set with respect to the 
background (1137 non-i-PPIs compounds extracted from FDA 
approved drug database), and a high predictive power. Using this 
algorithm onto another very popular dataset, ZINC [40], 185 com-
pounds were predicted to be potential i-PPIs. 
Another attempt to find rules to better define the chemical space 
of i-PPIs to improve screening approaches was made very recent-
ly [36], substantially with the same approach as the one just de-
scribed. 145 experimentally validated i-PPIs and 4857 existing 
drugs taken from the small subset of DrugBank database, filtered 
to obtain a final set composed of 66 diverse drug-like i-PPIs and 
557 traditional drugs with an improved chemical diversity, were 
evaluated again with Dragon. 1666 different chemical descriptors 
were evaluated to obtain as much information as possible to char-
acterize the two subsets and to allow their discrimination. Using 
those descriptors that separate the two subsets significantly (P-
values <0.05) and that are uncorrelated to each others (one relat-
ed to molecular shape, as in [38], whereas the other one related to 
the presence of multiple or aromatic bonds), two decision trees 
were built up and used in succession. The application of the two 
models on the MayBridge Screening collection (57,200 com-
pounds) and on the diversity set of the ChemBridge database 
(50,000 compounds) allowed to select, respectively, 13,799 and 
9,622 i-PPIs-like molecules. In a further work of the same group, 
the best model has been transposed into a computer program, 
PPI-Hi tProfi ler ( freely downloadable from http://
www.CDithem.com), that is able to build, from any drug-like com-
pound collection, a chemical library enriched in putative i-PPIs 
[41].  
The first examples of libraries dedicated to i-PPIs have been re-
cently created (Table 1, part a). The first database fully dedicated 
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to i-PPIs, TIMBAL (http://www-cryst.bioc.cam.ac.uk/timbal), was 
published in 2009 by Higueruelo and colleagues [42]. It is a fully 
hand-curated relational database holding a collection of i-PPIs 
retrieved from literature. At the date of publication, the database 
contained information about 104 molecules disrupting 17 protein-
protein complexes, retrieved from 40 papers. The comparison of 
the properties of these collected i-PPIs with those of ligands re-
trieved from 3D structures of complexes collected in CREDO da-
tabase [43], or with those of commercialized drugs extracted from 
MDDR database, or with those of compounds randomly selected 
from the catalogues of three different suppliers (Enamine, Asinex 
and Maybridge) confirmed that in general i-PPIs are larger and 
more hydrophobic, with more rings and less rotatable bonds than 
drugs and ligands from the PDB. Moreover, they have on average 
a smaller number of hydrogen bond donors and acceptors than 
the drugs set. The analysis of their Ligand Efficiency (LE), a pa-
rameter related to the free energy of binding per heavy atom [44] 
confirmed a previous observation [9] : i-PPIs show a slightly lower 
LE than that of typical medicinal chemistry leads with the same 
number of atoms.  
One year after, the database 2P2I was published. This is a hand-
curated structural database collecting information about the pro-
tein-protein interfaces for which both the protein-protein and pro-
tein-inhibitor complexes have been structurally characterized [45]. 
This allows users to extract the best descriptors of protein-protein 
interactions with a known inhibitor. The dataset was built through 
data mining from the literature and by exhaustive search of the 
Protein Data Bank [46], and it was finally compiled into a relational 
database that was used to further analyze the general properties 
of protein-protein interfaces with a known inhibitor, using several 
computational tools. A web interface at the address 
http://2p2idb.cnrs-mrs.fr was then developed to facilitate the ac-
cess to the data calculated for the different i-PPIs. In 2010, 17 
protein-protein complexes corresponding to 14 families and 56 
small molecule inhibitors bound to the corresponding target were 
collected in the database. The limited number of targets was due 
to the structural prerequisites that were applied. The same group 
published very recently a review in which they propose, in contrast 
with the well-known Lipinski’s “Rule-of-Five” [47], a “Rule-of-Four” 
to define the generic profile of a i-PPI (MW >400 Da, ALogP >4, 
number of rings >4 and number of hydrogen bond acceptors >4) 
[48]. Obiously, this means that these compounds will have difficul-
ties in the following phases of drug optimization, and that there is 
an urgent need for pharmaceutical companies interested in the 
development of i-PPIs using parallel technologies for optimal drug 
delivery, such as nanoparticles delivery systems. 
In conclusion, these computational tools have allowed to create 
databases more focused on i-PPIs and more precise rules to de-
scribe them in terms of physico-chemical features, thus increasing 
the chances of success for traditional approaches such as high-
throughput screening.  
 
Tools for the analysis of protein-protein interfaces 
The increasing availability of structures of protein complexes 
solved by experimental methods and the increasing accuracy of 
methods to predict the structure of protein-protein complexes [49] 
has allowed an extended access to structural information about 
protein-protein interfaces, that can be exploited for the develop-

ment of new i-PPIs. This information is extremely important and, 
when possible, a detailed analysis of the interaction surfaces 
should be made in order to increase the percentage of success in 
developing i-PPIs. It has been already stressed in the Introduction 
that protein-protein interfaces are quite different from the classical 
pockets targeted by traditional drug-like molecules, and that not all 
of them are suitable to bind molecules acting as disruptors of 
macromolecular interactions. During the time, computational biolo-
gy and bioinformatics have provided tools to estimate the 
“druggability” of the protein interfaces, characterizing their confor-
mational features [50]. They will be discussed in the following part. 
A summary of these tools is listed in Table 1, part b. 
The first condition to identify a suitable binding site for i-PPIs is 
the presence of a pocket on the protein’s surface. In fact, it is 
more difficult to obtain potent inhibitors for flat interfaces than for 
interfaces which contain well-defined cavities [8]. Unfortunately, 
the protein-protein complexes most attractive for drug discovery 
(i.e. those formed transiently between different proteins) have 
rather flat interfaces. Therefore, the presence of cavities or pock-
ets at the contact region should be searched very carefully during 
the evaluation of a protein-protein interaction. Several computa-
tional tools are currently available to find pockets on protein sur-
face, based on different criteria [51]. Two main types of tools were 
developed: those based on evolutionary algorithms and those that 
use structure-based algorithms. This last category can be subdi-
vided in geometry- and energy-based algorithms [52]. Some pop-
ular tools, most of which also have a Web interface for the analy-
sis are: SURFNET [53], LIGSITE [54], CASTp [55], AVP [56], Q-
SiteFinder [57], PocketPicker [58], AutoLigand [59], fpocket [60] 
and SiteMap [61]. Some further evolutions of these methods, such 
as LIGSITEcsc [62] and SURFNET-ConSurf [63], take into ac-
count also the degree of conservation of the residues in the pock-
et. A very recent tool, MDpocket, has been developed to detect 
small molecule binding sites and gas migration pathways on con-
formational ensembles such as molecular dynamics (MD) trajecto-
ries [64]. Also meta-methods that combine results from several 
methods have been implemented recently [65,66].  
The presence of a pocket on the protein-protein interface is a 
necessary but not sufficient condition for the development of drug-
like small molecules disrupting this interaction [67]. For example, it 
is more difficult to generate potent competitive i-PPIs if the two 
interacting chains are closely packed and make an extensive 
number of direct interactions [8]. In addition, the role of water 
cannot be ignored. Protein interfaces rich in cavities contain a 
large number of water molecules that are involved in bridging H-
bonds between the two macromolecular chains. This should be 
taken into account, since the displacement of these bound water 
molecules by the inhibitor could provoke a favorable entropic ef-
fect that might enhance its affinity [8]. Several tools have been 
developed that provide a more complete analysis of protein-
protein interfaces. For example, the very popular web server 
PDBePISA [68], provided by the EBI (http://www.ebi.ac.uk/msd-
srv/prot_int/pistart.html) is an interactive tool for the exploration of 
macromolecular interfaces that allows the investigation of the 
structural and chemical properties of macromolecular surfaces 
and/or interfaces, the probable quaternary structure of the com-
plex and the probable dissociation pattern, either for pre-
calculated or interactively calculated structures. PIC (http://
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pic.mbu.iisc.ernet.in/) is another Web server which recognizes 
various kinds of interactions within a protein or between proteins 
in a complex [69]. PROTORP (http://bioinformatics.sussex.ac.uk/
protorp/) is a server that calculates interaction properties from 3D 
structures of individual proteins of interest and for entire datasets 
in real time [70]. This server provides an efficient way of charac-
terizing protein-protein associations of new or existing proteins, 
and a mean of putting these values in the context of previously 
observed associations.  
To help in considering the suitability of a protein-protein interface 
for drug development on the basis of its structural and physico-
chemical properties, an empirical decision tree was proposed that 
takes into account parameters such as the presence of cavities, 
their hydrophobicity and size, the shape complementarity between 
the two interacting subunits within the cavity [8]. A more formal 
mathematical model to evaluate the “druggability” of a binding site 
based only on its physico-chemical properties was then developed 
[67]. With this method, the druggability of a set of 27 target bind-
ing sites was calculated and, despite the simplicity of the model, 
surprisingly good discrimination was achieved between non drug-
gable and easily druggable protein-protein interfaces. A possible 
use of this model could be the prioritization of the choice of targets 
suitable for drug discovery efforts [67].  
In addition to the generic physico-chemical properties, the study of 
protein-protein interactions have highlighted the presence of some 
regions of the interfaces that are more important than others for 
protein recognition and binding. These regions are called “hot 
spots” [71] and a large part of the interaction energy is concentrat-
ed there. In addition, hot spots are smaller than the full interface, 
and often there are well-defined pockets near them. For all these 
reasons, it might be easier to identify low-molecular-weight com-
pounds binding to the hot spots that inhibit protein-protein interac-
tion and therefore the identification of hot spots is a good starting 
point for drug development [72]. Useful experimental data to iden-
tify hot spots often comes from mutational studies, in particular 
alanine scanning mutagenesis studies [73]. Mutations may cause 
significant changes in the affinity of protein-protein interactions 
and thus help in identifying important residues, although it should 
be stressed that only if the mutation influences the conformational 
ensemble of the complex, measured binding free energy differ-
ences between mutant and wild type protein can be related to 
specific contact differences [50]. The increasing importance of 
these data has allowed the development of databases to collect 
many results of alanine scanning experiments and to make them 
available through the Web. An example is the ASEdb database, a 
searchable database of binding energy changes reulting from 
mutations of protein side chains to alanine, which is freely availa-
ble at the address: http://nic.ucsf.edu/asedb/ [74]. In addition, 
given the growing interest in hot spot determination and predic-
tion, an increasing number of computational approaches have 
been developed to predict the presence of hot spots in protein-
protein interfaces. The first one developed was an in silico alanine 
scanning approach, which used free energy functions (including 
van der Waals potentials, electrostatic interactions, hydrogen 
bonds, and desolvation energy) to calculate the change of binding 
free energy when alanine replaces (virtually) the residues of the 
hot spot region. This approach was performed using MD simula-
tions associated to free energy perturbation and thermodynamic 

cycles, combining explicit molecular mechanical energies and 
continuum solvation models for calculating interaction free ener-
gies [75]. Methods based on evaluations of binding free energy 
were further developed, also with the aim of reducing the high 
computational costs of these procedures [76-81]. Other methods 
were based on component analysis: the contributions of molecular 
mechanical energies and solvation free energies are assigned to 
those atoms that participate in the respective interaction, and 
these contributions are then summed to produce the total binding 
free energy of the residue [82]. These methods, however, have to 
deal with the fact that the total binding free energy is a state func-
tion, but their free energy components in general are not, and their 
determination is affected by the decomposition scheme chosen. 
Another alternative topological approach was developed repre-
senting protein-protein complexes as small-world networks [83].  
It was commonly thought that there was no general pattern of 
hydrophobicity, shape or charge that can be used as a basis for 
predicting which atoms of the protein will participate in hot spots 
[73]. Nevertheless, in more recent years, feature-based prediction 
methods have been developed thanks to the increasing amount of 
experimental information on hot spot regions. Most of them are 
based on machine-learning algorithms such as SVM, decision 
trees and so on [84-91]. Other methods implement also evolution-
ary information based on sequence conservation [92-94]. The 
increasing amount of information available has also prompted to 
develop databases of predicted and experimentally defined hot 
spots [95-96].  
When the structure of the protein-protein complex is not available, 
detecting the clefts in unbound protein interfaces by computational 
tools would provide starting points for the further rational design of 
i-PPIs. The most direct computational approach to deal with the 
conformational plasticity of proteins is MD simulations [97]. Sever-
al studies showed that even short MD simulations of proteins in 
their unbound state were able to sample the conformational fluctu-
ations of key residues at the interfaces in the bound state [98-
100]. Moreover, MD simulations should be able to discover the 
presence of “cryptic” binding sites that are not present in the un-
bound form of the interactors [101,102]. For example, MD simula-
tions were able to reveal the opening of the cryptic sites at the 
complex interface between IL-2 and IL-2R, opening the way to the 
finding of i-PPIs inhibitors for this interaction [103], as described 
below in more details. Although this suggests that predicting con-
formations of protein-protein interactions suitable for the binding of 
i-PPIs using MD simulations might be feasible, the routinely appli-
cation of this computational technique is still far from reality, es-
sentially because of the high computational demands. In addition, 
the force fields used require further refinement to take into ac-
count phenomena in which quantum effects are important [97]. An 
alternative to MD simulations is normal mode analysis (NMA) 
[104], in which an analytical solution to the equations of motions 
yields collective variables (normal modes) that describe the dy-
namics of the system. This method is particularly interesting in 
view of predicting bound protein states from unbound ones, and it 
can be applied to identify potential conformational changes of 
proteins upon binding.  
 
Docking 
Once the binding site(s) of a protein-protein complex are known, 
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the main computational biology approach to identify molecules 
that would bind those binding site(s) is essentially the docking. 
This methodology predicts the preferred reciprocal orientation of 
one molecule to a second one when they are bound together to 
form a stable complex, and may be used to predict the strength of 
association or the binding affinity between two molecules, using 
for example scoring functions somehow related to the binding 
energy. In general, the screening of large in silico databases is 
divided into two steps: a first one in which a coarse-grained quick 
selection of compounds is made at the expense of accuracy, and 
a second step in which selected compounds are docked with a 
higher level of accuracy. In both steps the ligand is generally 
treated as flexible, whereas typically the protein structure is kept 
rigid in the first step to reduce computational costs, and some 
degree of flexibility is possibly introduced during the second step. 
Docking is a widely used procedure in drug discovery, and the 
procedures applied to dock i-PPIs are in principle not dissimilar 
from those used to dock small molecules into “classical” binding 
sites, such as enzyme active sites. Therefore, an extensive de-
scription of docking programs is not the focus of the present re-
view (the reader is referred to several complete and recent re-
views that already exist on this subject, see for example [105-
107] ). Rather, the specific problems that are encountered when 
docking is applied to the discovery of i-PPIs are summarized here. 
The first problem is related to the fact that often the contribution of 
solvent in docking calculation is ignored [105]. It should be point-
ed out that the particularities of the interaction surfaces, stressed 
previously, do not allow to introduce much simplifications in the 
evaluation of the binding interactions between a small molecule 
and a protein-protein interface. In particular, solvent contribution 
plays a much greater role in these cases than in the interaction 
between a ligand and a pocket deeply buried in the protein core. 
Therefore, to treat correctly these simulations, it would be neces-
sary to deal with explicit solvent [50]. However, this would result in 
a computationally expensive simulation. Alternative approaches to 
treat the solvent implicitly using continuum or macroscopic models 
in which solvent properties are described in terms of average 
values [108] may also be applied. Continuum methods that in-
volve solution of the Poisson-Boltzmann equation [109] are more 
accurate, but with higher computational costs. Implicit solvent 
models such as the Generalized Born/surface area method allow 
to obtain a good accuracy in binding energy estimate saving com-
putational costs [110].  
Another great challenge to face when docking is applied to the 
discovery of ligands at protein-protein interfaces is the protein 
flexibility. In fact, side chains are on average more flexible at the 
protein’s surface or at protein-protein interfaces than in traditional 
binding pockets within the core of the proteins [111]. A compre-
hensive review on methods to deal with flexibility in docking has 
been published recently [112], and these methods could be ap-
plied for the docking of i-PPIs. Many methods address this prob-
lem either using multiple receptor representations for docking, or 
performing a conformational search within the space of discrete 
side chain conformers [113]. This last approach is typically the 
most expensive one in terms of computational resources, be-
cause of the change of the coordinates of wide parts on the re-
ceptor. Moreover, in general such methods allow for limited ad-
justments of the side chains and backbone conformation in the 

proximity of the binding pocket, but they do not consider large 
scale conformational changes that can occur upon ligand binding 
[105].  
Despite these problems, it is expected that docking procedures 
that take into account these considerations, with an optimal bal-
ance between computational requirements and accuracy in the 
description of the protein-protein interaction surface would be able 
to greatly increase the percentage of success in finding promising 
i-PPIs. 
 
i-PPIs developed using fragment-based drug discovery ap-
proach. 
Fragment-based drug discovery (FBDD) is an approach to identify 
lead compounds in drug discovery that allows to probe a large 
chemical space and to generate molecules with high ligand effi-
ciency [114-117]. Fragments are organic molecules smaller than 
traditional leads identified by high-throughput screening proce-
dures, and their physico-chemical features can be summarized by 
an empirical “rule of three” (MW <300, CLogP <3 and number of 
hydrogen bond donors and acceptors <3) [118]. Fragments can 
be considered as “building blocks” for more complex molecules: 
they bind to their target with lower affinity compared to drug-like 
molecules, but they can identify subpockets to which they bind 
with higher efficiency. When they are optimized for their potency 
(usually taking advantage of structural information about their 
binding mode and/or connecting more fragments to each others), 
new molecules are generated that retain high ligand efficiency, 
thanks to a number of high-quality interactions with the key pock-
ets of the protein. Moreover, the creation of a lead compound by 
FBDD potentially enables the assembly only of small molecules 
that explore and capture available surface features for high-affinity 
binding, removing poor binders early in the discovery process. 
Such optimized lead compounds are more likely to have improved 
pharmacokinetic properties than those obtained by traditional 
approaches [114]. In addition, with FBDD strategies smaller librar-
ies of fragments can be screened while maintaining the same 
probability of sampling a large chemical space [119,120]. One of 
the first examples of application of such strategy was published in 
a pioneering work in 1996, in which researchers used a technique 
called “SAR by NMR” consisting in the use of 1H-15N heteronucle-
ar single quantum correlation NMR as a screening tool for identi-
fying fragments that bind to a site of interest on a protein. A com-
bination of structure-based design and structure-activity relation-
ship (SAR) analysis was then used to link the fragments together 
[121]. Other experimental methods to provide additional infor-
mation about binding site and/or binding stoichiometry of frag-
ments are X-ray crystallography [122,123], surface plasmon reso-
nance [124] and mass spectrometry-based methods [125]. In 
particular, a method called “Tethering” developed at Sunesis 
Pharmaceuticals [126] relies on the rapid identification by mass 
spectrometry of fragments with the greatest affinity for a binding 
site of a protein through the detection of the formation of a stable 
disulfide bond between the fragment and a cysteine residue in the 
target binding site.  
In the last years, also computational methods have gained im-
portance in this field, as shown afterwards. Extensive reviews of 
the recent advancements in both computational and experimental 
approaches are available in literature [127-129], as well as sever-
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al examples of studies that apply FBDD for the discovery of new 
leads [115,130,131]. At present, FBDD has gained popularity in 
both academic and industrial worlds, and now it is often conduct-
ed in parallel with high-throughput screenings [129].  
The fragment-based approach seems to be especially appropriate 
to find i-PPIs because it is particularly suited for binding sites with 
multiple and nearby subsites, such as protein-protein interfaces 
[131]. A successful example of a fragment-based approach for the 
development of an i-PPI that reached clinical trials is that of small 
organic molecules developed at Abbott Laboratories that bind to 
the hydrophobic helical domain of Bcl-XL, Bcl-2 and another anti-
apoptotic molecule, Bcl-W. Using a SAR-by-NMR approach, two 
weak binding fragments were identified and subsequently im-
proved by fragment linking, parallel synthesis and structure-based 
design, to obtain ABT-737 [132], which was found to bind to Bcl-2 
with nanomolar affinity [133,134]. However, this molecule is not 
orally available and showed low aqueous solubility. Further opti-
mizations of multiple individual sites of the molecule gave additive 
effects, resulting in ABT-263 [135,136], that is orally available and 
has entered several clinical trials to test its efficacy in chronic 
lymphocytic leukemia, lymphoma, small-cell lung cancer, and 
solid tumor, alone or in combination with other anticancer agents 
[15].  
Another noteworthy example of the application of FBDD approach 
for the development of i-PPIs was the discovery of inhibitors of the 
interaction between IL-2 and its receptor IL-2R. After the design of 
compound Ro26-4550 [19], and the structural characterization of 
its interaction with the complex IL-2/IL-2R [137,138], a fragment-
based approach was used to develop new compounds [139-142], 
the best of which showed an improved IC50 of 60 nM, compared 

to the original IC50 of 3 M [141]. Computational simulations of IL
-2 have provided important clues toward understanding the ability 
of Ro26-4550 and fragments to bind synergistically [103]. In par-
ticular, MD simulations revealed highly correlated movements of 
side chains and backbone that form tightly coupled networks, and 
that would induce the opening of the cryptic sites at the complex 
interface [14].  
Given the increasing importance of the fragment-based approach 
in drug discovery in general, and in particular in finding i-PPIs, 
several computational tools and methods have been developed to 
support this strategy (Table 1, part c). Some computational tools 
can support the experimental phases of this approach. An exam-
ple in this case is a platform developed by Astex Technology, 
called “Pyramid”, in which libraries of fragments enriched by virtu-
al screening procedures for fragments likely to bind the target are 
screened using X-ray crystallography. Then, electron densities 
are analysed with automated procedure using a software called 
AutoSolve [123], and fragments identified to bind the target are 
subsequently optimized [133].  
In the last years, there has been an exponential increase in purely 
computational methods to support FBDD. They are applied in all 
stages of the discovery process, going from the creation of frag-
ment libraries, to the selection of fragments to be tested experi-
mentally, and to the evolution of fragments into potent compounds 
[144-147].  
As illustrated previously for libraries enriched in i-PPIs, a good 
fragment library can be obtained by filtering commercial libraries 
using the above-mentioned “Rule-of-three” or other filters specific 

for fragments. Alternatively, libraries are created based on diversi-
ty-driven fragment selection, to maximise the fraction of chemical 
space covered by the components, or starting from the decon-
struction of molecules into fragments. Diversity enhancements 
algorithms were developed independently from the needs of 
FBDD, but were successfully applied also to this field. They are 
typically based on clustering techniques, which group chemical 
structures using several criteria, and pick one or more representa-
tive molecule from each cluster. The two main approaches for 
clustering are the similarity-based and the grid-based strategies 
[148]. In the first case, descriptors reporting the presence or ab-
sence of specific atoms or chemical groups are used to character-
ise the structures, and fragments considered to be in the same 
chemical space are grouped together [149]. Also descriptors that 
take into account the 3D structure of a molecule can be em-
ployed, but it seems that they do not offer significant advantages 
over the other descriptors [150,151]. Statistical functions such as 
the Tanimoto coefficient are used to perform the clustering. 
A grid-based strategy divides the chemical space into a grid of 
distinct cells with the positions of the molecules in those cells 
determined by their physico-chemical features (e.g., charge, po-
larizability, H-bond capability, etc) [152]. Grid-based approaches 
are much more intuitive and visually informative than the similarity
-based ones, and they are also better suited for an easy identifica-
tion of chemical regions not covered in a particular library [128]. 
Several tools have been developed to implement the above-
mentioned rules in order to automatically design fragment librar-
ies. For examples, a number of computational tools were devel-
oped in house at Astra Zeneca from 1993 to 1999 [153].  
The alternative approach for building fragment-based libraries is 
to break bigger molecules into fragments and to collect them. This 
approach is especially useful to create a focused fragment library 
for a particular target when known inhibitors are already available. 
An example of this approach is the SHAPES strategy applied at 
Vertex Pharmaceuticals [154]. Some popular computational meth-
ods, such as RECAP [155], DAIM which has been described more 
recently [156], and a workflow integrated in the Pipeline Pilot 
package, have been developed to build collections of privileged 
fragments [157], breaking drug-like chemical compounds and 
applying then several filters to the resulting fragments. However, 
fragment deconstruction has not proven to be the most fruitful 
pathway for a FBDD approach [158]. Several examples of de-
signed fragment libraries are available in the literature [129].  
Once the fragment library has been obtained, in addition to exper-
imental strategies, also computational approaches can be used to 
test their affinity within the macromolecule of target. Docking and 
virtual screening procedures (see above) were applied also to 
FBDD. The low complexity of fragments and other pitfalls linked to 
the low reliability of the scoring functions used in fragment dock-
ing (caused by the fact that these functions have historically been 
optimised for drug-like compounds and not for fragments), has 
however highlighted the limitations of state-of-the-art docking 
programs in FBDD. Only very recently, approaches tailored for 
fragment docking have been developed [159], and programs such 
as Glide have implemented protocols for fragment docking 
[159,160]. In addition, the group of A. Caflisch has created several 
computational tools dedicated to high-throughput screening by 
fragment-based docking of large collections of small molecules 
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[161] that are freely available at http://www.biochem-
caflisch.uzh.ch. Another very recent tool that performs the search 
of fragments into a database, and their docking has been devel-
oped in the group of McCammon [162].  
Once the fragments that bind to the macromolecule(s) have been 
identified, there are several strategies to evolve them in a drug-like 
molecule. A possible strategy is to create chemical analogues with 
new groups that could potentially improve the affinity towards the 
targets. Otherwise, the “fragment-linking” approach consists in 
binding together fragments that show individual high affinity for 
different cavities or pockets of the target macromolecule. An inter-
esting computational strategy, called 3D-RISM [163] has been 
developed to identify the most probable positions and orientations 
of fragments on a protein surface, using 3D spatial distribution 
functions of the atomic sites of the ligand, calculated using the 
molecular theory of solvation. Other programs specialized in frag-
ment-linking strategies are GANDI [164] and CONFIRM [165]. The 
first one uses an island-based genetic algorithm to sample linkers 
in order to join pre-docked fragments; the second one screens a 
library of “bridges” to find suitable linkers between pre-docked 
fragments that have been selected by Glide. Linked candidates 
are selected on the basis of their strain energy and of the devia-
tion of the original fragments between their initial position and their 
position in the linked compound. 
The “fragment growing” strategy is an alternative strategy to 
evolve fragment into drug-like compounds by adding chemical 
complexity to the structure. Several programs have been pro-
posed to aid in this process, such as LUDI [166], SPROUT [167] 
SMoG [168], LigBuilder [169], and AutoGrow [170]. These tools 
can be applied also in the de novo design strategy [171-173]. A de 
novo design workflow developed within a collaboration between 
medicinal and computational chemists, and software developers 
was created recently combining a suite of already published pro-
grams [174]. Another strategy is the “fragment shuffling” for the 
identification of novel lead compounds combining central elements 
from fragment-based lead identification and structure-based de 
novo design. An automated workflow was recently developed to 
exploit calculated ligand fragment data sets derived from aligned 
and scored protein-ligand complex structures by recombining 
these fragments to novel molecules [175].  
When examples of ligands for selected targets are known, a gen-
eral strategy to develop new ligands is the pharmacophore ap-
proach, that can be applied also in the context of FBDD [176], 
essentially to enrich fragment libraries with chemotypes of interest 
or to analyze their complexity/diversity. For example, Gozalbes 
and colleagues developed an approach in which several pharma-
cophore hypotheses were developed based on the alignment of 
the most active inhibitors of heparanase known to date. The se-
lected pharmacophore model, once validated, was applied virtually 
to a database of around 700 chemical fragments [177].  
In conclusion, FBDD are new reliable methods that can be applied 
in drug discovery, and that are promising in the field of discovery 
of i-PPIs. Computational methods can be applied at different lev-
els in this field, although the peculiarity of fragments highlights the 
need for more specialized tools for these small molecules. 
 
Conclusions 
Small-molecules i-PPIs are an emerging family in the scenario of 

future drugs, and their development is seen as a new frontier that, 
thanks to the increasing knowledge about protein-protein interac-
tions and their meaning in the most important processes of cell life 
and metabolism, can be surely of outmost importance for the gen-
eration of new therapeutic approaches. The application of bioinfor-
matics and computational biology to this field has allowed to adopt 
a more rational approach for the finding of new molecules of this 
class, reducing the costs, saving the time and increasing the prob-
abilities of success in the drug development pipeline. This is a 
rather new approach and therefore these progress are not imme-
diately visible to the scientific community; however, it is likely that 
the advantages will become more and more evident in the near 
future, and we will benefit of new and more effective drugs to treat 
diseases.  
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a) Libraries enriched in i-PPIs 

Library Type Availability Reference URL 
MOE Software Commercial - http://www.chemcomp.com 
Dragon Software Commercial 39 http://www.talete.mi.it 
PPI-HitProfiler Software Free for academic users 41 http://www.cdithem.fr/ppiHitProfiler.php?lg=en 
TIMBAL Database Free 42 http://www-cryst.bioc.cam.ac.uk/timbal 
2P2I Database Free 45 http://2p2idb.cnrs-mrs.fr 
b) Tools for the analysis of protein-protein interfaces 
SURFNET Software Free for academic users 53 http://www.biochem.ucl.ac.uk/~roman/surfnet/surfnet.html 
LIGSITECSC Web server Free 62 http://projects.biotec.tu-dresden.de/pocket/ 
CASTp Web server Free 55 http://sts.bioengr.uic.edu/castp/ 
AVP Software Free 56 http://www.bioinf.org.uk/software/avp/ 
Q-SiteFinder Web server Free 57 http://www.modelling.leeds.ac.uk/qsitefinder/ 
PocketPicker Software Free 58 http://gecco.org.chemie.uni-frankfurt.de/pocketpicker/index.html 
AutoLigand Software Free 59 http://autodock.scripps.edu/resources/autoligand 
fpocket Software Free 60 http://fpocket.sourceforge.net/ 
SiteMap Software Commercial 61 http://www.schrodinger.com/products/14/20/ 
ConSurf Web server Free for academic users 63 http://consurf.tau.ac.il/ 
MDpocket Software Free 64 http://fpocket.sourceforge.net/ 
MetaPocket Web server Free 65 http://metapocket.eml.org/ 
MetaPocket 2.0 Web server Free 66 http://sysbio.zju.edu.cn/metapocket/ 
PDBePISA Web server Free 68 http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html 
PIC Web server Free 69 http://pic.mbu.iisc.ernet.in/ 
PROTORP Web server Free 70 http://bioinformatics.sussex.ac.uk/protorp/ 
ASEdb Database Free 74 http://nic.ucsf.edu/asedb/ 
KFC Server Web server Free 84 http://kfc.mitchell-lab.org/ 
HotSpot Wizard Web server Free 85 http://loschmidt.chemi.muni.cz/hotspotwizard/ 
HotPoint Web server Free 86,87 http://prism.ccbb.ku.edu.tr/hotpoint/ 
HSPred Web server Free 88,89 http://bioinf.cs.ucl.ac.uk/hspred 
PCRPi-DB Database Free 95 http://www.bioinsilico.org/PCRPIDB 
HotRegion Database Free 96 http://prism.ccbb.ku.edu.tr/hotregion 
c) Tools for fragment-based drug design 
Pyramid Software Commercial 123,133 http://astx.com/technology/pyramid-platform/ 
RECAP Software Commercial 155 http://www.chemaxon.com/jchem/doc/user/fragment_recap.html 
DAIM Software Free 156,161 http://www.biochem-caflisch.uzh.ch/download/ 
Pipeline Pilot Software Commercial 157 http://accelrys.com/products/pipeline-pilot/ 
Glide Software Commercial 159,160 http://www.schrodinger.com/ 
CrystalDock Software Free 162 http://www.nbcr.net/crystaldock/ 
3D-RISM Software Commercial 163 http://www.scm.com/Products/Overview/ADFinfo.html 
GANDI Software Free 164 http://www.biochem-caflisch.uzh.ch/download/ 
CONFIRM Software Commercial 165 http://accelrys.com/products/pipeline-pilot/ 
LUDI Software Commercial 166 http://accelrys.com/services/training/life-science/

FragmentBasedApproachesDescription.html 
SPROUT Software Commercial 167 http://www.simbiosys.ca/sprout/index.html 
SMoG Software Free 168 http://www-shakh.harvard.edu/~smog/ 
LigBuilder V1.2 Software Free 169 http://mdl.ipc.pku.edu.cn/cgi-bin/down.cgi?kind=e 
AutoGrow Software Free 170 http://autogrow.ucsd.edu/ 
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Table 1- List of the computational tools cited in the text.  
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