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Abstract- Vibration analysis of a beam is an important and peculiar subject of study in mechanical engineering. All real 
physical structures, when subjected to loads or displacements, behave dynamically. The additional inertia forces, from 
Newton’s second law, are equal to the mass times the acceleration. If the loads or displacements are applied very slowly 
then the inertia forces can be neglected and a static load analysis can be justified. Hence, dynamic analysis is a simple 
extension of static analysis.  
Many developments have been carried out in order to try to quantify the effects produced by dynamic loading. Examples of 
structures where it is particularly important to consider dynamic loading effects are the construction of tall buildings, long 
bridges under wind-loading conditions and buildings in earthquake zones, etc.  
Dynamic structures subjected to periodic loads compose a very important part of industrial machineries. One of the major 
problems in these machineries is the fatigue and the cracks initiated by the fatigue. These cracks are the most important 
cause of accidents and failures in industrial machinery. In addition, existing of the cracks may cause vibration in the system. 
Thus an accurate and comprehensive investigation about vibration of cracked dynamic structures seems to be necessary. 
On the base of these investigations the cracks can be identified well in advance and appropriate measures can be taken to 
prevent more damage to the system due to the high vibration level.  
Typical situations where it is necessary to consider more precisely the response produced by dynamic loading are vibrations 
due to equipment or machinery, impact load produced by traffic, snatch loading of cranes, impulsive load produced by 
blasts, earthquakes or explosions. So it is very important to study the dynamic nature of structures. 
Keywords- Vibration, FSM, GQDM, FEM, CEM 

 
1. Introduction 
1.1. Overview 
Beams are fundamental models for the structural 
elements of many engineering applications and have 
been studied extensively. There are many examples of 
structures that may be modeled with beam-like elements, 
for instance, long span bridges, tall buildings, and robot 
arms, beams as well as the presence of cracks in the 
structural components can have a significant influence 
on the dynamic responses of the whole structure; it can 
lead to the catastrophic failure of the structure. To predict 
the Failure, vibration monitoring can be used to detect 
changes in the dynamic responses and/or dynamic 
characteristics of the structure. Knowledge of the effects 
of cracks on the vibration of the structure is of 
importance. Efficient techniques for the forward analysis 
of cracked beams are required. In this paper various 
techniques or approaches that can analyze the vibration 
of beams or structures with or without cracks.  
A promising approach for developing a solution for 
structural vibration problems is provided by an advanced 
numerical discretisation scheme, such as; finite element 
method (FEM).The finite element method (FEM) is the 
dominant discretization technique in structural 

mechanics. The differential quadrature method (DQM) 
was first advanced by Bellman and his associates in the 
early 1970s aiming towards offering an efficient 
numerical method for solving non-linear partial 
differential equations. The method has since been 
applied successfully to various problems. in third order 
shear deformation theory free vibration of beams with 
different boundary conditions is analyzed. The boundary 
conditions of beams are satisfied by using Lagrange 
multipliers. 
Fourier series will be utilized for the solution of simply 
supported beams with different loadings in order to arrive 
at a free vibration. The equation of the free vibration is 
{(δ2y/ δt2)/ (δ4y/ δx4)} One of the methods of solving this 
type of equation is the separation of the variables which 
assumes that the solution is the product of two functions, 
one defines the deflection shape and the other defines 
the amplitude of vibration with time. Modes of deflection 
with and without time along the beam were drawn for 
certain cases. To this end, the composite element 
method is then extended for free and forced vibration 
analysis of cracked beams. The principal advantage of 
the proposed method is that it does not need to partition 
the stepped beam into uniform beam segments between 
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any two successive discontinuity points and the whole 
beam can be treated as a uniform beam. Moreover, the 
presented work can easily be extended to cracked 
beams with an arbitrary number of non-uniform 
segments. 
 
1.2. Historical Prospective 
Beams are fundamental models for the structural 
elements of many engineering applications and have 
been studied extensively. There are many examples of 
structures that may be modeled with beam-like elements, 
for instance, long span bridges, tall buildings, and robot 
arms. The vibration of Euler–Bernoulli beams with one 
step change in cross-section has been well studied. Jang 
and Bert (1989) derived the frequency equations for 
combinations of classical end supports as fourth order 
determinants equated to zero. Bala subramanian and 
Subramanian (1985) investigated the performance of a 
four-degree-of-freedom per node element in the vibration 
analysis of a stepped cantilever.  
De Rosa (1994) studied the vibration of a stepped beam 
with elastic end supports. Recently, Koplow et al. (2006) 
presented closed form solutions for the dynamic 
response of Euler–Bernoulli beams with step changes in 
cross section. There are also some works on the 
vibration of beams with more than one step change in 
cross-section. Bapat and Bapat (1987) proposed the 
transfer matrix approach for beams with n-steps but 
provided no numerical results. Lee and Bergman (1994) 
used the dynamic flexibility method to derive the 
frequency equation of a beam with n-step changes in 
cross-section. Jaworski and Dowell (2008) carried out a 
study for the free vibration of a cantilevered beam with 
multiple steps and compared the results of several 
theoretical methods with experiment.  
A new method is presented to analyze the free and 
forced vibrations of beams with either a single step 
change or multiple step changes using the composite 
element method (CEM) (Zeng, 1998; Lu & Law, 2009).  
1.3. Introductions to vibration 
Vibrations are time dependent displacements of a 
particle or a system of particles with respect to an 
equilibrium position. If these displacements are repetitive 
and their repetitions are executed at equal interval of 
time with respect to equilibrium position the resulting 
motion is said to be periodic. One of the most important 
parameters associated with engineering vibration is the 
natural frequency.. Each structure has its own natural 
frequency for a series of different modes which control its 
dynamic behavior. Whenever the natural frequency of a 
mode of vibration of a structure coincides with the 
frequency of the external dynamic loading, this leads to 
excessive deflections and potential catastrophic failures. 
This is the phenomenon of resonance. An example of a 
structural failure under dynamic loading was the well-
known Tacoma Narrows Bridge during wind induced 
vibration.  
In practical application the vibration analysis assumes 
great importance. For example, vehicle-induced vibration 
of bridges and other structures that can be simulated as 

beams and the effect of various parameters, such as 
suspension design, vehicle weight and velocity, 
damping, matching between bridge and vehicle natural 
frequencies, deck roughness etc., on the dynamic 
behavior of such structures have been extensively 
investigated by a great number of researchers . The 
whole matter will undoubtedly remain a major topic for 
future scientific research, due to the fact that continuing 
developments in design technology and application of 
new materials with improved quality enable the 
construction of lighter and more slender structures, 
vulnerable to dynamic and especially moving loads. 
Every structure which is having some mass and elasticity 
is said to vibrate. When the amplitude of these vibrations 
exceeds the permissible limit, failure of the structure 
occurs. To avoid such a condition one must be aware of 
the operating frequencies of the materials under various 
conditions like simply supported, fixed or when in 
cantilever conditions. 
1.3.1 Classification of vibration 
Vibration can be classified in several ways. Some of the 
important classifications are as follows: 
Free and forced vibration: If a system, after an internal 
disturbance, is left to vibrate on its own, the ensuing 
vibration is known as free vibration. No external force 
acts on the system. The oscillation of the simple 
pendulum is an example of free vibration. If a system is 
subjected to an external force (often, a repeatating type 
of force), the resulting vibration is known as forced 
vibration. The oscillation that arises in machineries such 
as diesel engines is an example of forced vibration. If the 
frequency of the external force coincides with one of the 
natural frequencies of the system, a condition known as 
resonance occurs, and the system undergoes 
dangerously large oscillations. Failuers of such 
structures as buildings, bridges, turbines and airplane 
have been associated with the occurrence of resonance. 
Undamped and damped vibration: If no energy is lost 
or dissipated in friction or other resistance during 
oscillation, the vibration is known as undamped vibration. 
If any energy lost in this way, however, it is called 
damped vibration. In many physical systems, the amount 
of damping is so small that it can be disregarded for 
most engineering purposes. However, consideration of 
damping becomes extremely important in analyzing 
vibratory system near resonance. 
Linear and nonlinear vibration: If all the basic 
components of vibratory system—the spring, the mass 
and the damper—behave linearly, the resulting vibration 
is known as linear vibration. If however, any of the basic 
components behave non-linearly, the vibration is called 
nonlinear vibration. 
1.4 Crack  
A crack in a structural member introduces local flexibility 
that would affect vibration response of the structure. This 
property may be used to detect existence of a crack 
together its location and depth in the structural member. 
The presence of a crack in a structural member alters 
the local compliance that would affect the vibration 
response under external loads. 
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1.4.1 Classification of Crack 
Based on geometries, cracks can be broadly 
classified as follows: 

(1) Transverse crack: These are cracks 
perpendicular to beam axis. These are the most 
common and most serious as they reduce the 
cross section as by weakens the beam. They 
introduce a local flexibility in the stiffness of the 
beam due to strain energy concentration in the 
vicinity or crack tip. 

(2) Longitudinal cracks: These are cracks parallel 
to beam axis. They are not that common but they 
pose danger when the tensile load is applied at 
right angles to the crack direction i.e. 
perpendicular to beam axis. 

(3) Open cracks: These cracks always remain open. 
They are more correctly called “notches”. Open 
cracks are easy to do in laboratory environment 
and hence most experimental work is focused on 
this type of crack 

(4) Breathing crack: These are cracks those open 
when the affected part of material is subjected to 
tensile stress and close when the stress is 
reversed. The component is most influenced 
when under tension . The breathing of crack 

results in non‐linearity in the vibration behavior of 
the beam. Most theoretical research efforts are 
concentrated on “transverse breathing” cracks 
due to their direct practical relevance. 

(5) Slant cracks: These are cracks at an angle to 
the beam axis , but are not very common . There 
effect on lateral vibration is less than that of 
transverse cracks of comparable severity. 

(6) Surface cracks: These are the cracks that open 
on the surface .They can normally be detected by 

dye‐penetrates or visual inspection. 
(7) Subsurface cracks: Cracks that do not show on 

the surface are called subsurface cracks . Special 
techniques such as ultrasonic, magnetic particle, 
radiography or shaft voltage drop are needed to 
detect them. 

1.5 Introduction to beam 
A beam is generally considered to be any member 
subjected to principally to transverse gravity or vertical 
loading. The term transverse loading is taken to include 
end moments. 
There are many types of beams that are classified 
according to their size, manner in which they are 
supported, and their location in any given structural 
system. 
 

 
Fig. 1.5.1 Loading on Beams 

 
Beams can be straight as shown in Figure 1.5.2. 
• For example the straight member bde. Curved as 
shown in c. 
• For example the curved member abc. 
 Beams are generally classified according to their 
geometry and the manner in which they are supported. 

 
Fig.1.5.2 Loading on Beams 

 
Geometrical classification includes such features as the 
shape of the cross section, whether the beam is Straight 
or – Curved Or whether the beam is Tapered, or – Has a 
constant cross section. Beams can also be classified 
according to the manner in which they are supported.  
Some types that occur in ordinary practice are shown in 
Figure 3, the names of some of these being fairly 
obvious from direct observation. 
Note that the beams in (d), (e), and (f) are statically 
indeterminate. 

 
Fig. 1.5.3 Types of Beams Based on the Manner in 

Which They are supported. 
 
A beam is a horizontal structural member used to 
support loads. Beams are used to support the roof and 
floors in buildings, 

 
Fig.1.5.4. Beams to support the roof and floors in 

buildings 
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Fig.1.5.5 Shapes of Beam 

 
Common materials are steel and wood. The parallel 
portions on an I-beam or H-beam are referred to as the 
flanges.   The portion that connects the flanges is 
referred to as the web. Beams are supported in 
structures via different configurations Beams are 
designed to support various types of loads and forces.

 
Fig.1.5.6 Load on Beam 

 
2. Literature Review 
[1].Rao, Govardhana (2009) UK in Vibration Analysis of 
Beam analyze the vibration characteristics of beams. All 
real physical structures, when subjected to loads or 
displacements, behave dynamically. The additional 
inertia forces, from Newton’s second law, are equal to 
the mass times the acceleration. If the loads or 
displacements are applied very slowly then the inertia 
forces can be neglected and a static load analysis can 
be justified. Hence, dynamic analysis is a simple 
extension  of static analysis.  Many developments have 
been carried out in order to try to quantify the effects 
produced by dynamic loading. Examples of structures 
where it is particularly important to consider dynamic 
loading effects are the construction of tall buildings, long 
bridges under wind-loading conditions and buildings in 
earth quake zones, etc.      
Typical situations where it is necessary to consider more 
precisely the response produced by dynamic loading are 
vibrations due to equipment or machinery, impact load 
produced by traffic, snatch loading of cranes, impulsive 
load produced by blasts, earthquakes or explosions. So 
it is very important to study the dynamic nature of 
structures.  
[2]. Sonam Lakra And Pradeep Guria , National 
Institute Of Technology, Rourkela (2011) make the 
analysis of cracked beamsin  Vibration analysis of beam 
with multiple cracks. The present work deals with the 
free vibration analysis of a cracked beam with multiple 
transverse cracks using 
finite element method. In this analysis, an overall 
additional flexibility matrix, instead of the local additional 
flexibility matrix is added to the flexibility matrix of the 
corresponding intact beam element to obtain the total 
flexibility matrix, and from there the result is compared 
with previous studies. The natural frequencies of free 

vibration of the beam with multiple cracks are computed. 
It is observed that with increase in number of cracks the 
natural frequencies decreases. The effect of cracks is 
more pronounced when the cracks are near to the fixed 
end than free end. The natural frequency decreases with 
increase in relative crack depth. 
[3]. M. Behzad, a. Meghdari, a. Ebrahimi-Mechanical 
Engineering Department, Sharif University of 
Technology, Tehran, IRAN proposed new techniques 
for vibration analysis of a Cracked beam in A new 
approach for vibration analysis of a Cracked beam. 
In this paper the equations of motion and corresponding 
boundary conditions for bending vibration of a beam with 
an open edge crack has been developed by 
implementing the Hamilton principle. A uniform Euler-
Bernoulli beam has been used in this research. The 
natural frequencies of this beam have been calculated 
using the new developed model in conjunction with the 
Galerkin projection method. The crack has been 
modeled as a continuous disturbance function in 
displacement field which could be obtained from fracture 
mechanics. The results show that the natural frequencies 
of a cracked beam reduce by increasing crack depth. 
There is an excellent agreement between the 
theoretically calculated natural frequencies and those 
obtained using the finite element method. 
[4]. Z.R. Lu, M. Huang and J.K. Liu Sun Yat-sen 
University P.R. China make the analysis by using new 
approach i.e. CME in Vibration Analysis of Beams with 
and without Cracks Using the Composite Element Model. 
Beams are fundamental models for the structural 
elements of many engineering applications and have 
been studied extensively. There are many examples of 
structures that may be modeled with beam-like elements, 
for instance, long span bridges, tall buildings, and robot 
arms. The vibration of Euler–Bernoulli beams with one 
step change in cross-section has been well studied. The 
correctness and accuracy of the proposed method are 
verified by some examples in the existing literatures. The 
presence of cracks in the structural components, for 
instance, beams can have a significant influence on the 
dynamic responses of the whole structure; it can lead to 
the catastrophic failure of the structure. To predict the 
failure, vibration monitoring can be used to detect 
changes in the dynamic responses and/or dynamic 
characteristics of the structure. Knowledge of the effects 
of cracks on the vibration of the structure is of 
importance. Efficient techniques for the forward analysis 
of cracked beams are required. To this end, the 
composite element method is then extended for free and 
forced vibration analysis of cracked beams. The principal 
advantage of the proposed method is that it does not 
need to partition the stepped beam into uniform beam 
segments between any two successive discontinuity 
points and the whole beam can be treated as a uniform 
beam.  
[5].MESUT S¸I˙MS¸EK and TURGUT KOCATU¨ RK 
Department of Civil Engineering, Yildiz Technical 
University, Istanbul, Turkey make the vibration 
analysis of beams by using third order shear deformation 
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theory in free vibration analysis of beams by using a 
third-order Shear deformation theory In this study, free 
vibration of beams with different boundary conditions is 
analyzed within the framework of the third-order shear 
deformation theory. The boundary conditions of beams 
are satisfied using Lagrange multipliers. To apply the 
Lagrange’s equations, trial functions denoting the 
deflections and the rotations of the cross-section of the 
beam are expressed in polynomial form. Using 
Lagrange’s equations, the problem is reduced to the 
solution of a system of algebraic equations. The first six 
eigenvalues of the considered beams are calculated for 
different thickness-to-length ratios. The results are 
compared with the previous results based on 
Timoshenko and Euler–Bernoulli beam theories. 
 
3. Problem Classification 
3.1 Introduction 
According to S. H. Krandall (1956), engineering 
problems can be classified into three categories: 
(i)  Equilibrium problems 
(ii) Eigen value problems 
(iii)Propagation problems 
(i)Equilibrium problems- are characterized by the 
structural or mechanical deformations due to quasi-static 
or repetitive loadings. In other words, in structural and 
mechanical systems the solution of equilibrium problems 
is a stress or deformation state under a given load. The 
modeling and analysis tasks are thus to obtain the 
system stiffness or flexibility so that the stresses or 
displacements computed accurately match the observed 
ones. 
(ii)Eigen value problems can be considered as 
extensions of equilibrium problems in that their solutions 
are dictated by the same equilibrium states. There is an 
additional distinct feature in eigenvalue problems: their 
solutions are characterized by a unique set of system 
configurations such as resonance and buckling. 
(iii)Propagation problems are to predict the 
subsequent stresses or deformation states of a system 
under the time-varying loading and deformation states. It 
is called initial value problems in mathematics or 
disturbance transmissions in wave propagation. 
Modal testing is perhaps the most widely accepted words 
for activities involving the characterization of mechanical 
and structural vibrations through testing and 
measurements. It is primarily concerned with the 
determination of mode shapes (eigenvectors) and modes 
(eigenvalues), and to the extent possible the damping 
ratios of a vibrating system. Therefore, modal testing can 
be viewed as experimental solutions of eigenvalue 
problems. There is one important distinction between 
eigenvalue analysis and modal testing. Eigenvalue 
analysis is to obtain the eignvalues and eigenvectors 
from the analytically constructed governing equations or 
from a given set of mass and stiffness properties. There 
is no disturbance or excitation in the problem description. 
On the other hand, modal testing is to seek after the 
same eigenvalues and eigenvectors by injecting 
disturbances into the system and by measuring the 

system response. However, modal testing in earlier days 
tried to measure the so-called free-decay responses to 
mimic the steady-state responses of equilibrium 
problems. 
                   
 
 
 
3.2 Comparison of Engineering Analysis and System 
Identification 

Parameters 
Engineering 
analysis 

System 
identification 

Equilibrium 

Construct the 
model first, and 
then obtain 
deformations 
under any given 
load. 

Measure the 
dynamic 
input/output first, 
and then obtain the 
flexibility. 

Eigen value 

Construct the 
model first, and 
then obtain 
eigenvalues 
without any 
specified load. 

Measure the 
dynamic 
input/output first, 
then obtain 
eigenvalues that 
corresponds to the 
specific excitation  

Propagation 

Construct the 
model first, and 
then obtain 
responses for 
time varying 
loads. 

Measure the 
dynamic 
input/output first, 
and then obtain the 
model corresponds 
to the specific load. 

 
Observe from the above Table that the models are first 
constructed in engineering analysis. In system 
identification the models are constructed only after the 
appropriate input and output are measured. 
Nevertheless, for both engineering analysis and system 
identification, modeling is a central activity. Observe also 
that, in engineering analysis, once the model is 
constructed it can be used for all of the three problems. 
On the other hand, the models obtained by system 
identification are usually valid only under the specific set 
of input and output pairs. The extent to which a model 
obtained through system identification can be applicable 
to dynamic loading and transient response 
measurements depends greatly upon the input 
characteristics and the measurement setup and 
accuracy.  
3.3 Structural Modeling by System Identification 
As noted in the previous section, modeling constitutes a 
key activity in engineering analysis. For example, the 
finite element method is a discrete structural modeling 
methodology. Structural system identification is thus a 
complementary endeavor to discrete modeling 
techniques. A comprehensive modeling of structural 
systems is shown in Fig. 1. The entire process of 
structural modeling is thus made of seven blocks and 
seven information transmission arrows (except the 
feedback loop). Testing consists of the first two blocks, 
Structures and Signal Conditioning along 
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With three actions, the application of disturbances as 
input to the structures, the collection of sensor output, 
and the processing of the sensor output via filtering for 
noise and aliasing treatment. FFT and Wavelets 
Transforms are software interface with the signal 
conditioniners. From the viewpoint of system 
identification, its primary role is to produce as accurately 
as possible impulse response functions either in 
frequency domain or in time domain variables. It is 
perhaps the most important software task because all 
the subsequent system realizations and the 
determination of structural model parameters do depend 
on the extracted impulse response data. About a fourth 
of this course will be devoted to learn methods and 
techniques for extracting the impulse response functions.  
System realization performs the following task: 
For the model problem of plant: ˙x = A x + B u 
Given measurements of output: y = C x + D u             
Input: u,  
Determine system characteristics: A, B C and D 
Structural modeling block is to extract physical 
structural quantities from the system characteristics or 
realization parameters (A, B, C, D). This is because 
realization characteristics still consist of abstract 
mathematical models, not necessarily in terms of the 
desired structural quantities. 
 

 
Fig.3.3.1.Chart for Analysis using CME 

 
Specifically, one obtains, 
Given Realization parameters: A, B, C, and D 
Determine either Modal quantity: modes (ω) and mode 
shapes (φ) 
Or physical matrices: mass (M), stiffness (K) and 
damping (D) 
Finite element model updating, active controls and 
health monitoring are the Beneficiaries of the preceding 
four activities. Hence, we will try to touch upon these 
topics, perhaps as term projects, depending on how this 
course progresses itself before the Thanksgiving recess. 
Finally, if necessary, one may have to repeat testing, 
hopefully this time utilizing the experience gained from 
the first set of activities. Even experienced 
experimentalists often must repeat testing. A good 
experimentalist rarely believes his/her initial results 
whereas a typical analyst almost always thinks his/her 
initial results are valid. 
3.4 Analytical solution of vibrating structures 

This section is a starting points of a guided tour, though 
an incomplete one at best, of modeling, analysis and 
structural system identification. To this end, we introduce 
a reference problem, which for our case is an analytically 
known model so that when we are astray from the tour 
path, we can all look up the map and hopefully steer 
ourselves back to the reference point and continue our 
tour. 
 

 
Fig.3.4.1. Three DOF Spring- Mass Systems 

 
This study dealt with domain decomposition in the 
recently proposed generalized differential quadrature 
rule. In detail, the authors concentrated on the free 
vibration of multispan and stepped Euler beams, and 
beams carrying an intermediate or end concentrated 
mass. Since compatibility conditions should be 
implemented in a strong form at the junction of the sub 
domains concerned, the FEM techniques used for 
internal moments and shear forces must not be used. 
Compatibility conditions and their differential quadrature 
expressions were explicitly formulated. A peculiar 
phenomenon was found in deferential quadrature 
applications that equal length sub domains gave more 
accurate results than unequal length ones using the 
same number of sub domain grids. Various examples 
were presented and very accurate results have been 
obtained. 
 
4. Methods of Vibration Analysis 
4.1 Finite element method 
4.1.1 Introduction 
The field of Mechanics can be subdivided into three 

major areas: 
                  --- Theoretical 
Mechanics --- applied 
                  --- Computational 

Theoretical mechanics deals with fundamental laws and 
principles of mechanics studied for their intrinsic 
scientific value. Applied mechanics transfers this 
theoretical knowledge to scientific and engineering 
applications, especially as regards the construction of 
mathematical models of physical phenomena. 
Computational mechanics solves specific problems by 
simulation through numerical methods implemented on 
digital computers. 
 
4.1.2 Computational Mechanics 
Several branches of computational mechanics can be 
distinguished according to the physical scale of the focus 
of attention: 
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Nano mechanics deals with phenomena at the molecular 
and atomic levels of matter. As such it is closely linked to 
particle physics and chemistry. A micromechanics looks 
primarily at the crystallographic and granular levels of 
matter. Its main technological application is the design 
and fabrication of materials and micro devices. 
Continuum mechanics studies bodies at the macroscopic 
level, using continuum models in which the 
microstructure is homogenized by phenomenological 
averages.  
The two traditional areas of application are solid and fluid 
mechanics. The former includes structures which, for 
obvious reasons, are fabricated with solids. 
Computational solid mechanics takes an applied 
sciences approach, whereas computational structural 
mechanics emphasizes technological applications to the 
analysis And design of structures. Computational fluid 
mechanics deals with problems that involve the 
equilibrium and motion of liquid and gases. Well-
developed subsidiaries are hydrodynamics, 
aerodynamics, acoustics, atmospheric physics, shock, 
combustion and propulsion.  
A system is studied by decomposition: its behavior is that 
of its components plus the interaction between 
components. Components are broken down into 
subcomponents and so on. As this hierarchical 
breakdown process continues, individual components 
become simple enough to be treated by individual 
disciplines, but component interactions get more 
complex. 
4.1.3 Statics vs. Dynamics 
Continuum mechanics problems may be subdivided 
according to whether inertial effects are taken into 
account or not: 

 
In dynamics actual time dependence must be explicitly 
considered, because the calculation of inertial (and/or 
damping) forces requires derivatives respect to actual 
time to be taken. Problems in statics may also be time 
dependent but with inertial forces ignored or neglected. 
Accordingly static problems may be classed into strictly 
static and quasistatic. For the former time need not be 
considered explicitly; any historical time-like response 
ordering parameter, if one is needed, will do. In quasi-
static problems such as foundation settlement, metal 
creep, rate-dependent plasticity or fatigue cycling,  
realistic measure of time is required but inertial forces 
are still neglected. 
4.1.4 Discretization methods 
A final classification of CSM static analysis is based on 
the discretization method by which the continuum 

mathematical model is discretized in space, i.e., 
converted to a discrete model with a finite number of 
degrees of freedom: 

 
In CSM linear problems finite element methods currently 
dominate the scene as regards space discretization. 
Boundary element methods post a strong second choice 
in specific application areas. For nonlinear problems the 
dominance of finite element methods is overwhelming. 
4.1.5 FEM Variants 
The term Finite Element Method actually identifies a 
broad spectrum of techniques that share common 
features outlined in above sections. Two sub 
classifications that fit well applications to structural 
mechanics are 

 
of the variants listed above, emphasis is placed on the 
displacement formulation and stiffness solution. This 
combination is called the Direct Stiffness Method or 
DSM. 
4.1.6 The Finite Element Method (FEM) 
A promising approach for developing a solution for 
structural vibration problems is provided by an advanced 
numerical discretization scheme, such as; finite element 
method (FEM).The finite element method (FEM) is the 
dominant discretization technique in structural 
mechanics. The basic concept in the physical FEM is the 
subdivision of the mathematical model into disjoint (non-
overlapping) components of simple geometry called finite 
elements or elements for short. The response of each 
element is expressed in terms of a finite number of 
degrees of freedom characterized as the value of an 
unknown function, or functions, at a set of nodal points.  
The response of the mathematical model is then 
considered to be approximated by that of the discrete 
model obtained by connecting or assembling the 
collection of all elements. A straight beam element with 
uniform cross section is shown in Figure.1. The Euler-
Bernoulli beam theory is used for constituting the finite 
element matrices. The longitudinal axis of the element 
lies along the x axis. The element has a constant 
moment of inertia I, modulus of elasticity E, density r and 
length l . Two degrees of freedom per node, translation 
along y-axis (y1, y2) and rotation about z-axis (y1I,y2I) are 
considered.  

 
Fig.4.1.1 Straight Beam Element 
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Equations of Motion of the Beam 
The equation of motion for a multiple degree of freedom 
undamped structural system is represented as follows 
[M] { ̈} + [K]{y}={F(t)} 

Where { ̈} and y are the respective acceleration and 
displacement vectors for the whole structure and {F (t)} is 
the external force vector. Under free vibration, the 
natural frequencies and the mode shapes of a multiple 
degree of freedom system are the solutions of the 
eigenvalue problem. 

[[K]-2[M]]{ }=0 

Where  is the angular natural frequency and  is the 
mode shape of the structure for the corresponding 
natural frequency. 
4.2 Composite Element Method (CEM) 
The composite element is a relatively new tool for finite 
element modeling. This method is basically a 
combination of the conventional finite element method 
(FEM) and the highly precise classical theory (CT). In the 
composite element method, the displacement field is 
expressed as the sum of the finite element displacement 
and the shape functions from the classical theory. The 
displacement field of the CEM can be written as 

 
Where uFEM (x,t) and uCT (x,t) are the individual 
displacement fields from the FEM and CT,respectively. 
Taking a planar beam element as an example, the first 
term of the CEM displacement field can be expressed as 
the product of the shape function vector of the 
conventional finite element method N(x) and the nodal 
displacement vector  

 
Where    q(t)=[v1(t),1(t),v2(t),2(t)]T and ‘ v ’ and  
represent the transverse and rotational displacements, 
respectively. 
The second term uCT(x,t) is obtained by the 
multiplication of the analytical mode shapes with a 
vector of N coefficients c ( also called the c degrees-of-
freedom or c-coordinates).

 
Wherei(i=1,2,….N) is the analytical shape function of 
the beam. Different analytical shape functions are used 
according to the boundary conditions of the beam. Like 
the FEM, the CEM can be refined using the h-refinement 
technique by increasing the number of finite elements. 
Moreover, it can also be refined through the c-refinement 
method, by increasing the number of shape functions. 
Here, we apply the c-refinement from the CEM, where 
the beam needs only to be discretized into one element. 
This will reduce the total number of degrees-of-freedom 
in the FEM. The displacement field of the CEM for the 
Euler-Bernoulli beam element can be written from 
Equations (1) to (3) as 

 
is the generalized shape function of the CEM, 

Q(t)=[v1(t),1(t),v2(t),2(t,c1(t),c2(t),….,cN(t))]T 
is the vector of generalized displacements, and N is the 
number of shape functions used from the classical 
theory. 
The composite element method is proposed for both free 
and forced vibration analyses of beams with multiple 
steps. As the composite beam element is of a one-
element-one-member configuration, modeling with this 
type of element would not need to take into account the 
discontinuity between different parts of the beam. The 
accuracy of this new composite element has been 
compared satisfactorily with existing results. One 
advantage of the method proposed is that it can be 
extended easily to deal with beams consisting of an 
arbitrary number of non-uniform segments. Regarding 
the free and forced vibration analysis for cracked beam 
using composite element, modeling with this type of 
element would allow the automatic inclusion of 
interaction effect between adjacent local damages in the 
finite element model. The accuracy of the present 
method has been compared satisfactory with existing 
model and experimental results. 
4.3 Differential Quadrature Method (DQM)  
The differential quadrature method (DQM) was first 
advanced by Bellman and his associates in the early 
1970s aiming towards offering an efficient numerical 
method for solving non-linear partial differential 
equations. The method has since been applied 
successfully to various problems. When applied to 
problems with globally smooth solutions, the DQM can 
yield highly accurate approximations with relatively few 
grid points. This has made the DQM a favorable choice 
in comparison to standard "finite difference” and "finite 
element methods”. In recent years, the DQM has 
become increasingly popular in solving differential 
equations and is gradually emerging as a distinct 
numerical solution technique. 
An updating of the state of the art on the DQM and a 
comprehensive survey of its applications are available 
from two recent review papers. Bellomo focused his 
attention on the conventional DQM, which dealt with 
deferential equations of no more than second order. Bert 
and Malik have cited seven examples to explain its 
applications, six of which still belong to the conventional 
DQM. Only the third of the seven examples dealt with the 
high order deferential equation of Euler beam, whose 
governing equation is a fourth order one with double 
boundary conditions at each boundary. The main 
difficulty for such high order problems as Euler beams is 
that there are multiple boundary conditions but only one 
variable (function value) at each boundary.  
To apply the double conditions, a d-point approximation 
approach of the sampling points was "first proposed by 
Jang et al. in 1989 and discussed thoroughly by Bert and 
Malik. The crux of the d-point technique is that an inner 
point near the boundary point is approximately regarded 
as a boundary point. The introduction of the d-point 
technique to multiple boundary condition problems 
indicated a major development in the application of the 
DQM to high order differential equations in solid 
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mechanics. However, this breakthrough was also 
accompanied by a major disadvantage, an arbitrary 
choice of the d-value. Shu and Chen made a new 
endeavor to improve the distribution of the sampling 
points still using the d-point technique. In order to 
develop a better alternative to the d-point technique in 
solving fourth order differential equations for beam and 
plate problems, a new method was proposed in 
references, where the boundary points' rotation angles of 
beam and plate structures were employed as 
independent variables. Therefore, the shortcomings 
corresponding to the d-point technique have been 
overcome successfully. Wang and Gul also mentioned a 
generalization of their method to sixth and eighth order 
equations, and Bellomo also tried to generalize the 
conventional DQM to more than third order equations. 
However, they did not give the details of the 
implementation, and no paper related to the just-
mentioned generalizations has appeared until the 
present time to the authors' knowledge.  
The generalization of the DQM to any high order 
differential equations is apparently an urgent need in the 
present DQM research. The generalized differential 
quadrature rule (GDQR) has been proposed recently by 
the present authors and detailed formulations have been 
presented to implement any high order differential 
equations. The GDQR has been applied for the "first time 
to sixth and eighth order problems and to third order 
problems without using the d-point technique. Moreover, 
the GDQR has been extended to high order initial value 
differential equations of second to fourth orders, while no 
one has mentioned this generalization. In this paper the 
GDQR was still applied to the Euler beam problem. It is 
seemingly unnecessary for this kind of simple problem to 
be dealt with again, since it has been solved in many 
papers either using the d-point technique or not.  
Consider a circular annular plate with an intermediate 
circular support, was studied in reference. The 
fundamental frequencies obtained using the DQM 
differed by about 10% from exact values, and the DQM 
did not provide satisfactory accuracy for some cases. It 
is apparent that an error must have occurred in these 
simple problems. Domain decomposition should have 
been employed at the intermediate supports but failed to 
be applied in references, because a shear force 
discontinuity exists there and the continuously 
differentiable trial functions are employed in the DQM. 
Domain decomposition has been used and very accurate 
results have been obtained by the present authors. The 
above analysis indicates that the study in this paper is 
necessary for a correct and thorough understanding of 
the DQ techniques. Moreover, the solution accuracy 
produced by the method itself can be substantiated 
quantitatively, since many examples have analytic 
solutions and the disturbance caused by d-point values 
is exempted.  
4.3.1 Applications 
The free vibration of Euler beams is governed by fourth 
order differential equations. The fourth order differential 
equations for various problems have been solved using 

the GDQR in papers, and the GDQR expression for a 
fourth order boundary value differential equation has 
been used as follows: 

 
Convenience of the notation. wj is the function of value at 
point xi,w1(1) and wN(1) are the "first order derivatives of 
the displacement function, i.e.; rotation angles, at the "rst 
and Nth points. E(r)ij are the rth order weighting 
coefficients at point xi . The GDQR explicit weighting 
coe$cients have been derived in references [12, 17] and 
were used directly in this paper. The cosine}type 
sampling points in normalized interval [0, 1] will be 
employed in this work. Their advantage has been 
discussed in paper [4]  

 
Example 1: Stepped Beams 
Consider the free vibration of a straight Euler beam 
having stepped cross-section only at one place, as 
shown in Figure 3. These two sections have uniform 
cross-sections individually. They have different flexural 
rigidity (EI1 and EI2) and different cross-section area (A1 
and A2). Here the GDQR's solutions are compared with 
those analytical solutions in paper, which considered a 
stepped beam with circular-section and with 

 
Fig.4.3.1. the stepped-beam geometry 

L1 = L2 = L/2 and β = I2/I1     Then the "rst and second 
section's governing diferential equations are written, 
respectively, as follows: 

 
Where 0 is the density, u the circular frequency, and ¸ 
the total length of the beam. Through normalization 
manipulation, equations (3) and (4) are written, 
respectively, as 

 
is dimensionless frequency parameter, and f normalized 
local co-ordinate. Usually, the same number N of 
sampling points of sub domains is used.  
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There are two boundary conditions at each end, and 
totally four boundary conditions, which have four GDQR 
analogues from a proper combination of equations.  
4.4 Third-Order Shear Deformation Theory 
In this study, free vibration of beams with different 
boundary conditions is analyzed within the framework of 
the third-order shear deformation theory. The boundary 
conditions of beams are satisfied using Lagrange 
multipliers. To apply the Lagrange’s equations, trial 
functions denoting the deflections and the rotations of 
the cross-section of the beam are expressed in 
polynomial form. Using Lagrange’s equations, the 
problem is reduced to the solution of a system of 
algebraic equations. The first six eigenvalues of the 
considered beams are calculated for different thickness-
to-length ratios. The results are compared with the 
previous results based on Timoshenko and Euler–
Bernoulli beam theories. 
4.4.1. Introduction 
There are many studies on the theory and analysis of 
beam-type structures in the literature. The oldest and the 
well-known beam theory is the Euler–Bernoulli beam 
theory (or classical beam theory—CBT) which assumed 
that straight lines perpendicular to the mid-plane before 
bending remain straight and perpendicular to the mid-
plane after bending. As a result of this assumption, 
transverse shear strain is neglected. Although this theory 
is useful for slender beams and plates, it does not give 
accurate solutions for thick beams and plates. The next 
theory is the Timoshenko beam theory (the first order 
shear deformation theory—FSDT) which assumed that 
straight lines perpendicular to the mid-plane before 
bending remain straight, but no longer remain 
perpendicular to the mid-plane after bending.  
In FSDT, the distribution of the transverse shear stress 
with respect to the thickness coordinate is assumed 
constant. Thus, a shear correction factor is required to 
compensate for the error because of this assumption in 
FSDT. The third-order shear deformation theory (TSDT) 
which assumed parabolic distribution of the transverse 
shear stress and strain with respect to the thickness 
coordinate was proposed for beams with rectangular 
cross-sections (Wang et al 2000). Also, zero transverse 
shear stress condition of the upper and lower fibres of 
the cross-section is satisfied without a shear correction 
factor in TSDT. 
There are many studies related with the problem of free 
vibration of beams based on CBT and FSDT 
(Timoshenko & Young 1955; Hurty & Rubinstein 1967; 
Farghaly 1994; Banerjee 1998; Nallim & Grossi 1999; 
Kim & Kim 2001; Lee et al 2003; Auciello & Ercolano 
2004; Zhou 2001; Lee & Schultz 2004; S¸ims¸ek 2005a, 
b; Kocat¨urk & S¸ims¸ek 2005a, b). The relationship 
between the bending solution of TSDT and those of CBT 
and FSDT was presented (Wang et al 2000). The exact 

stiffness matrix was derived from the solutions of 
differential equations according to TSDT for isotropic 
beams (Eisenberger 2003). Frequency equations and 
characteristic functions of homogeneous orthotropic 
beams having different boundary conditions were 
obtained, and the first six natural frequency parameter 
was tabulated for different values of stiffness ratios and 
values of thickness-to-length ratios (Soldatos & 
Sophocleous 2001). Static deflections of the laminated 
composite beams subjected to uniformly distributed load 
were studied using the classical, the first-order, the 
second-order and the third-order beam theories (Khdeir 
& Reddy 1997).  
In the present study, free vibration of beams with 
different boundary conditions is analysed based on the 
third-order shear deformation theory (TSDT). Frequency 
equations of the beams are derived using Lagrange’s 
equations. The boundary conditions of the beams are 
considered using Lagrange multipliers. The trial functions 
for the deflections and rotations of the cross-section of 
the beam are selected in polynomial form. The first six 
eigenvalues of the considered beams are calculated for 
different thickness-to-length ratios. The obtained results 
are compared with earlier results based on CBT and 
FSDT. 
4.4.2. Theory and formulations 
A straight uniform beam of length L, width b, depth h, 
having rectangular cross-section is shown in figure 1. A 
Cartesian coordinate system (x, y, z) is defined on the 
central axis of the beam, where the x axis is taken along 
the central axis, the y axis in the width direction and the z 
axis in the depth direction. Also, the origin of the 
coordinate system is chosen at the mid-point of the total 
length of the beam. The third-order shear deformation 
theory (TSDT) is based on the following displacement 
fields (Wang et al 2000); 
 

 

 
Fig. 4.4.1 (a) Clamped-clamped, (b) clamped-pinned, (c) 
pinned-pinned, (d) pinned-guided straight uniform beams 

with rectangular cross-section 
Where ux and uz are displacements in x and z directions 
at any material point in the (x, z) plane, α = 4/(3h2),w is 
the transverse displacements, and φ represents the 
slope ∂ux/∂z at z = 0 of the deformed line which was 
straight in the undeformed beam. In this case φ(x, t) and 
α together define the third-order nature of the deformed 
line. The symbol (),x indicates the derivative with respect 
to x.  
By choosing the appropriate boundary conditions given 
by Equations, the constraint conditions of the beams are 
given as follows: 
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i. For the Clamped-Clamped Beam 

 
ii. For the Clamped-Pinned Beam 

 
iii. For the Pinned-guided Beam 

 
iv. For the Pinned-Pinned Beam 

 
 
xA and xB denote the location of left and right supports of 
the beam respectively. By introducing 
The Lagrange multipliers formulation, the Lagrangian 
functional of the problem is obtained. 
The free vibrations of the beams have been investigated 
for different thickness-to-length ratios according to 
TSDT. The eigenvalues of the beams obtained with 
various boundary conditions are compared with the 
previously available results of CBT and FSDT. Using 
Lagranges equations with the trial functions in the 
polynomial form and satisfying the constraint conditions 
by the use of Lagrange multipliers is a nice way for 
studying the free vibration characteristics of the beams. 
4.5 Fourier Series 
4.5.1.Theory and Application 
The Fourier series method with separation of variables is 
suitable to be used for the solution of free vibration of 
beams. As the method is trigonometric (sine and cosine), 
then the deflection modes are of the same shape for 
different types of loads. 
The partial differential equation (p.d.e) for free 
undamped transverse vibration of beams is 

 
Where c2 = 

  

 
  

One method of solving this equation is by the separation 
of variables; 
it assumes that: 

 
Where Φ(x) is a function of distance along the beam 
defining its deflection shape 
When it vibrates and Y(t) defines the amplitude of 
vibration with time. 
Substituting equation (2) for equation (1) yields: 

 
Since each of the variables x and t are independent 
variables, then each side of 
equation is equal to a constant, say ω2 
The general solution is given by: 

 
Substitution 

 
The complete solution for a particular structure requires 
expressions for the displacement, slope, moment and 

shear at the supports which must be substituted for (7). 
This procedure will yield three coefficients in terms of the 
forth and will also yield a frequency equation from which 
may be evaluated. The final coefficient expression is a 
magnitude of vibration that would require 
Acknowledging of the initial conditions of motions. 
For the simply supported beams the boundary conditions 
are: 

 
 
 
4.5.2. Intermediate Concentrated Load 
If P is the concentrated load acting at distance 1 x from 
the left side of the 
Beam as shown in Fig. (1). 

 
Fig.4.5.1. Intermediate Concentrated Load 

In order to get the deflection due to the static load,it was 
assumed that the deflected shape represented by half 
range fourier series: 

 
Which satisfies the boundary conditions of simply 
supported beams. 
 
5. Case Study 
5.1 Experimental Set up 
The PULSE software analysis was used to measure the 
frequency ranges to which the foundations of various 
machines are subjected to when the machine is running 
with no load and full load. This will help us in designing 
the foundations of various machines in such a way that 
they are able to resist the vibration caused in them. 
Below we present the analysis of frequency 
measurements for a few cantilever beams measured in 
structural Engineering lab in N.I.T. Rourkela. 
5.2. Equipments Required 
1. Model hammer. 
2. Accelerometer. 
3. Portable pulse. 
4. Connectors – Model no: AO 0087D 
5. Specimen. 
6. Display Unit. 
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Fig.5.1 Vibration measurement 

5.3. Equipments Description 
(1) Deltatron Accelerometer:- Deltatron accelerometer 
combines high sensitivity, low and small physical 
dimensions making them ideally suited for model 
analysis. The slits in the oscilrometer housing make it 
simple to mount with bee box that one easily fitted to the 
plate. 

 
Fig.5.2. Deltatron Accelerometer 

 
(2) Model hammer:- The model hammer exits the 
structure with a constant force over a frequency range of 
interest. Three interchange tips are provided which 
determine the width of the input pulse and thus the band 
width the hammer structure is acceleration compensated 
to avoid glitches in the spectrum due to hammer 
structure resonance. 

 
Fig.5.3. Model hammer 

(3) Portable pulse T- type (3560C) 
Bruel and kjaer pulse analyzer system type – 3560. The 
software analysis was used to measure the frequency 
ranges to which the foundation various machines are 
subjected to when the machine is running with no load 
and full load. This will help us in designing the 
foundations of various machines on such a way that they 
are able to resist the vibration caused in them. 

 
Fig 5.4 Pulse Analyser and Display Unit 

(4) Display unit: - This is mainly in the form of 
PC(Laptop) when the excitation occurs to the structure 
the signals transferred to the portable PULSE and after 
conversion comes in graphical form through the 
software. Mainly the data includes graphs of force Vs 
time, frequency Vs time resonance frequency data etc. 
5.4. Experimental Program 
Equipments Brüel & Kjær PULSE™, Multi-analyzer 
System Type 3560 was used to measure the frequency 
ranges of a cantilever beam. 
Setup and Procedure (FFT analyzer) 

1. 
cut from a bulk available beam. 

2. By the use of screw gauge the depth and width 
of beam section were measured. 

3. 10 cm length of beam was properly inserted to 
the concrete inside the mould and compacted 
using vibrator. 

4. After seven days of curing the specimen was 
taken out. 

5. Now the length of the cantilever beam from 
fixed end to the free end was found out. 

6. The connections of the FFT analyzer, laptop, 
transducers, and model hammer along with the 
requisite power connections were made. 
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7. The accelerometer -4507 type was fixed by 
beeswax to the cantilever beam at one of the 
nodal points. 

8. The 2302-5 modal hammers were kept ready 
to strike the beam at the singular points. 

9. Then at each point the modal hammer was 
struck once and the amplitude Vs frequency 
graph was obtained from graphical user 
interface. 

10. The FFT analyzer and the accelerometer are 
the interface to convert the time domain 
response to frequency domain. Hence the 
frequency response spectrumH1 (response, 
force) was obtained. 

11. By moving the cursor to the peaks of the FFT 
graph (m/s2/N),the cursor values and the 
resonant frequencies were recorded. 

12. At the time of the striking with modal hammer 
to the singular point precautions were taken 
whether the striking should have been 
perpendicular to the aluminium beam surface. 

13. The above procedure is repeated for all the 
nodal points. 

14. The values (i.e.,natural frequencies and 
resonant frequencies) obtained from the FRF 
spectrums were compared with respect to the 
FEM analysis. 

5.6 Results and discussion 
Beam specification 

Software used FFT analyzer and accessories, 
pulse lab shop version 9.0 

Parameter Frequency 

Length of cantilever 20cm 

Section dimentions 0.0095X0.0095m2 

Boundary conditions One end fixed and another free 

Material Aluminum 

Mass density 2659kgm-3 

Elastic modulus 68.0E09Nm-2 

Poison’s ratio 0.205 

 
Natural frequency of the beam was theoretically 
computed using the FORTRAN program. 
Experimental results for uncracked beam: Aluminum 
beam (fixed‐free condition)  

Mode Frequency (by  
theoretical 
method) 

Frequency 
(by practical 
method) 

Percentage 
of error 

First 197.42 Hz 187.00 Hz 5.27% 

Second 1227.66 Hz 1180.00 Hz 3.88% 

Third 3393.65 Hz 3308.00 Hz 2.52% 

forth 6547.61 Hz 6425.00 Hz 1.87% 

 
Experimental results for single crack: Aluminum beam 

(fixed‐free condition) 

Sr
no 

 Crack 
depth 

1st 
mode 

2nd 
mode 

3rd 
mode 

4th 
mode 

1. Cracks 
at center 

2mm 144 928 2088 2792 

2. 6mm 136 887 2064 2744 

3. 8mm 48 560 1448 2744 

4. Crack at 
0.25L 

2mm 128 960 1936 2832 

5. 6mm 112 876 1720 2456 

6. 8mm 88 448 856 1736 

7. No 
crack 

nil 1180 756 3308 6425 
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Experimental results for Multi crack Beam: 
Beam Specification: 
Length of the steel beam for free‐free condition = 25 cm 
Breadth = 9.2mm 
Height = 9.2mm 
 

Sr 
no 

Location Crack 
depth 

1st 
mode 

2nd 
mode 

3rd 
mode 

4th 
mode 

1. Crack at 
10mm,  
5mm 

2mm 144 928 2088 2792 

2. 6mm 136 887 2064 2744 

3. 8mm 48 560 1448 2744 

4. Crack at 
7.5mm, 
2.5mm 

2mm 128 960 1936 2832 

5. 6mm 112 878 1720 2456 

6. 8mm 88 448 856 1736 

7. No crack nil 118 756 2125 4165 

 

 

 
 
 
6. Conclusion and Scope for Future Work 
The vibration analysis of a structure holds a lot of 
significance in its designing and performance over a 
period of time. The verification of the analytical approach 

with a considerable amount of experimental data and 
with the results of calculations showed that the analytical 
approach enables one to obtain well-founded 
relationships between different dynamic characteristics 
and crack parameters and to solve the inverse problem 
of damage diagnostics with sufficient accuracy for 
practical purposes. 
Using Lagranges equations with the trial functions in the 
polynomial form and satisfying the constraint conditions 
by the use of Lagrange multipliers is a nice way for 
studying the free vibration characteristics of the beams. 
In this study, the system equations are solved by 
Differential Quadratic Method, which is a succeeding and 
easy transformation technique. By solving the algebraic 
functions set, which are the transforms of differential 
equations, natural frequencies are obtained. The results 
are tabulated and compared with the former studies and 
a great accuracy to exact results is obtained. 
In case of cracks the frequencies of vibration of cracked 
beams decrease with increase of crack depth for crack at 
any particular location due to reduction of stiffness. The 
effect of crack is more pronounced near the fixed end 
than at far free end. The first natural frequency of free 
vibration decreases with increase in number of cracks. 
The natural frequency decreases with increase in relative 
crack depth.  
The results obtained are accurate and are expected to 
be useful to other researchers for comparison. The study 
in this work is necessary for a correct and thorough 
understanding of the Vibration analysis techniques. 
 

6.1 Future Work   
 • The cracked cantilever can be analyzed under the 
influence of external forces.   
 • The dynamic response of the cracked beams can be 
analyzed for different crack orientations.       
 • Stability study of the cracked beams can be done.  
 • Use hybrid neuro genetic technique for crack 
detection.                         
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