
Real-Time System: Best Job of using advanced Task Scheduling
H.S. Fadewar1 S.V. Kakade2 and Desai A.P. 3

1

2

3

Abstract :

In adaptive soft real time system an acceptable
deadline misses and delays are tolerable. The main
objective of this work is to design and development of
efficient preprocess scheduler that will select the
algorithm which is best suited for the particular
problem in the real time environment.

1. INTRODUCTION

Task scheduling is the main activity in the design
of Real-Time System (RTS). It assures both functionality
and safety of such systems. RTS can be modeled as a set
of periodic tasks that must be completed before specific
deadlines.

The scheduling algorithms used in a particular
application can have a significant impact on the
functionality of the real-time system. One effect is to
accumulate the a periodic tasks at a point in time in an
overloaded system. In this situation the scheduler may not
be able to meet all of the a periodic and periodic tasks
deadlines [1].

Every algorithm has a specific set of type of input
and produces the output corresponding to the input pattern.
In this project the objective is to find such algorithms and
then design a scheduler that will select the particular
algorithm depending upon the given input pattern and apply
dynamically to the workload.

2. SCHEDULING MECHANISMS

A multiprogramming operating system allows more
than one process to be loaded into the executable memory
at a time and for the loaded process to share the CPU using
time-multiplexing. Part of the reason for using
multiprogramming is that the operating system itself is
implemented as one or more processes, so there must be a
way for the operating system and application processes to
share the CPU. Another main reason is the need for

processes to perform I/O operations in the normal course
of computation. Since I/O operations ordinarily require
orders of magnitude more time to complete than do CPU
instructions, multiprograming systems allocate the CPU
to another process whenever a process invokes an I/O
operation .Here we are using the scheduling to schedule
the process for execution [2,3].

3. TASK SCHEDULING

Most RTOSs do their scheduling of tasks using a
scheme called “priority-based preemptive scheduling.”
Each task in a software application must be assigned a
priority, with higher priority values representing the need
for quicker responsiveness. Very quick responsiveness is
made possible by the “preemptive” nature of the task
scheduling. “Preemptive” means that the scheduler is
allowed to stop any task at any point in its execution, if it
determines that another task needs to run immediately [2].

The basic rule that governs priority-based
preemptive scheduling is that at every moment in time,
“The Highest Priority Task that is Ready to Run, will be
the Task that Must be Running.” In other words, if both a
low-priority task and a higher-priority task are ready to
run, the scheduler will allow the higher-priority task to
run first. The low-priority task will only get to run after
the higher-priority task has finished with its current work
[David Kalinsky, 2004]. What if a low-priority task has
already begun to run, and then a higher-priority task
becomes ready? This might occur because of an external
world trigger such as a switch closing. A priority-based
preemptive scheduler will behave as follows:

It will allow the low-priority task to complete the
current assembly-language instruction that it is executing.
(But it won’t allow it to complete an entire line of high-
level language code; nor will it allow it to continue running
until the next clock tick.) It will then immediately stop the

 Sinhgad Insitute of Management and Computer Application, Narhe, Pune.
 Swami Vivekanand Mahavidyalaya, Udgir.

 Rajiv Gandhi College of Computer Science, Vidyut Nagar, Nanded

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-05-07
 Available online at: http://www.bioinfo.in/contents.php?id=280

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

execution of the low-priority task, and allow the higher-
priority task to run. After the higher-priority task has
finished its current work, the low-priority task will be
allowed to continue running. This is shown in Figure 1,
where the higher-priority task is called “Mid-Priority Task.”

Of course, while the mid-priority task is running, an even
higher-priority task might become ready. This is
represented in Figure 1 by “Trigger_2” causing the “High-
Priority Task” to become ready. In that case, the running
task (“Mid-Priority Task”) would be preempted to allow
the high-priority task to run. When the high-priority task
has finished its current work, the mid-priority task would
be allowed to continue. And after both the high-priority
task and the mid-priority task complete their work, the low-
priority task would be allowed to continue running. This
situation might be called “nested preemption.” [4]

Figure 1: Timeline for Priority-based Preemptive
Scheduling Examples.

Each time the priority-based preemptive scheduler
is alerted by an external world trigger (such as a switch
closing) or a software trigger (such as a message arrival),
it must go through the following 5 steps:

 Determine whether the currently running task
should continue to run. If not

 Determine which task should run next.

 Savethe environment of the task that was stopped
(so it can continue later).

 Set up the running environment of the task that will
run next.

 Allow this task to run.

These 5 steps together are called “task switching.”

3.1. Advanced Task Scheduler :

Advanced Task Scheduler - is a multifunctional task
scheduler, which allows launching programs, scripts and

batch files, opening documents and Internet pages,
displaying popup reminders, playing sounds, sending
messages, shutting down and restarting computer, stopping
running processes, establishing and closing dial-up
connections - automatically. Advanced Task Scheduler
offers full set of scheduling tools that allow running
scheduled tasks automatically once, minutely, hourly, daily,
monthly, yearly, in specified period of time after starting
the computer or by such events as hot key, computer idle,
dial-up connection established/terminated, user logged on/
logged off, program started/stopped and so on. Advanced
Task Scheduler can automate many of your routine tasks.
Automatic launching of programs with flexible set of
planning tools will set you free from having to wait until
some time to run needed applications. Popup reminders
let you not forget important things that you were planning
to get done. Automatic shutdown feature allows leaving
the computer running while being sure that it will be shut
down at specified hour. The capability of stopping
processes at specified hour makes it possible not only
starting programs automatically but stopping programs
automatically as well. Automatic opening and closing dial-
up connections allows both establishing and closing dial-
up connections at extremely accurate moment of time[5].

Advanced Task Scheduler places its icon to system
tray. This provides access to all features of the scheduler
via the popup menu, which appears by right-clicking on
the icon. Advanced Task Scheduler can also be restored
by pressing the hotkey.

Advanced Task Scheduler can be started as a
Windows Service and work in the background so it will
not take a place on the desktop but all scheduled tasks will
work normally. This feature allows run Advanced Task
Scheduler even when no user is logged on[5].

Advanced Task Scheduler can record all executed
tasks to the log file or send them to an email address. With
this log, you will always be informed which task and at
what time was executed. The log file can be printed out at
any time.

4. Task Types :

A task is a sequential program that is invoked for execution

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-05-07
 Available online at: http://www.bioinfo.in/contents.php?id=280

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

by the occurrence of a particular event. Tasks may be either
periodic, aperiodic or sporadic in nature. A periodic task
is characterized by a release time, a deadline, and a period.
The release time is the time at which the task is ready to
execute, the deadline is the time by which the task must
complete execution, and the period is the exact spacing
between successive invocations of the task. When the
release time of the task is specified before it is scheduled,
the task is called a concrete periodic task. When release
times are arbitrary, a task is invoked periodically after its
first release[6]. A periodic tasks have soft or no deadlines.
Sporadic tasks are tasks that may enter and leave the system
at any time. Sporadic tasks are characterized by a release
time, a deadline, and a period. For a sporadic task, the
period represents the minimum time after which the
invocation of the next task occurs. When release times are
specified in advance, scheduling decisions can be made
off-line or statically. When release times are arbitrary,
scheduling decisions are made on-line. Figure. 2 illustrate
this classification [Litoiu & Tadei, 2001].

Fig. 2. Classification of the different types of tasks.

4.1 Real-Time Task Model :

A real-time application is specified by means of a
set of tasks. Real-time tasks are the basic executable entities
that are scheduled; they may be periodic or a periodic,
and have hard (late data are bad data) or soft (late data
may still be good data) real-time constraints. The quality
of scheduling depends on the exactness of these parameters,
so their determination is an important aspect of real-time
design[7].

• r, task release time, i.e. the triggering time of the
task execution request.

• C, task worst-case computation time, when the
processor is fully allocated to it.

• D, task relative deadline, i.e. the maximum
acceptable delay for its processing.

• T, task period (valid only for periodic tasks).
• When the task has hard real-time constraints, the

relative deadline allows computation of the absolute
deadline d = r + D. Transgression of the absolute
deadline causes a timing fault. Also, when tasks are
allowed to access shared resources, their access
needs to be controlled in order to maintain data
consistency.

5. CONCLUSION

This work is to design and development of efficient
preprocess scheduler that will select the algorithm which
is best suited for the particular problem in the real time
environment.
References

[1] [Churnetski, 2003] Kevin Churnetski “A comparison
of real-time scheduling algorithms using visualization
of tasks and evaluation of real-time extensions to Linux
“ Computer Science-RIT in 2003.

[2] [Lipari at. Al., 2003] Giuseppe Lipari, Enrico Bini,
Gerhard Folher, “A Framework for Composing Real-
Time Schedulers”, Elsevier Science B. V. in 2003.

[3] [Ahmad at. Al., 2003] Idawaty Ahmad, S.Shamala,
M.Othman and Muhammad Fauzan Othman “A
Preemptive Utility Accrual Scheduling Algorithm
for Adaptive Real Time System”.

 [4] [Yu at. al., 2003] Haobo Yu, Andreas Gerstlauer, Daniel
Gajski “ RTOS Scheduling in Transaction Level Models
“ CECS Technical Report 20/03/2003.

[5] [Mercer, 2002] Clifford W. Mercer “An Introduction to
Real-Time Operating Systems: Scheduling Theory” ,
School of Computer Science Carnegie Mellon University
Pittsburgh, Pennsylvania 15213.

[6] [Litoiu & Tadei, 2001] Marin Litoiu, Roberto Tadei,
“Real-time task scheduling with fuzzy deadlines and
processing times”, Elsevier Science B. V. in 2001.

[7] [Litoiu & Tadei, 2001] Marin Litoiu, Roberto Tadei,
“Fuzzy scheduling with application to Real-time system”,
Elsevier Science B. V. in 2001.

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-05-07
 Available online at: http://www.bioinfo.in/contents.php?id=280

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

