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Abstract- When we talk about the interfacing with a
computer we typically mean typing at a keyboard or
using a mouse. The EEG, or electroencephalogram,
is electrical activity recorded from the scalp and
produced by neurons in the brain. The growth of a
Brain Computer Interface, or in our case, an EEG-
based communication device, requires the raw EEG
signal to be converted into a new output channel
through which the brain can communicate and
control its environment. This includes a discussion of
an EEG-based user interface, covering all aspects of
this topic ranging from the EEG input, over the
processing stage, all the way to the corresponding
output signals There is a growing awareness that for
BCI's to be most useful for people with severe motor
disabilities they must support self-paced (or
“asynchronous”) operation.
Keywords: Brain Computer Interface (BCI),
Electroencephalography (EEG), Artificial Neural
Networks (ANN), Event-related potentials (ERP),
Event-related desynchronization (ERD), Event-related
synchronization (ERS).

1.  Introduction

Hans Berger first measured human brainwaves
in 1924. Today, the EEG has become one of the most
useful tools in the diagnosis of epilepsy and other
neurological disorders. An electroencephalographic
(EEG) pattern is an important and challenging
biomedical signal processing problem. Such
classification can be utilized to enable a patient to
communicate without any overt physical movement.

Developments of faster digital computers and better
EEG devices have motivated many researchers to work
on BCI systems [1] [2]. The EEG classification is one
important part of the brain computer interface (BCI) -
user interface which allows to work with computer and
thus to communicate even for the disabled person (like
those with the spinal cord injury, etc.). The EEG
classification verifying physiology hypotheses about
the brain can be also found in the field of physiology.

Different research groups have examined and
used different methods to achieve this. Almost all of
them are based on electroencephalography (EEG)
recorded from the scalp. The EEG is measured and
sampled while the user imagines different things (for
example, moving the left or the right hand). Depending
on the BCI, particular preprocessing and feature
extraction methods are applied to the EEG sample of
certain length. It is then possible to detect the task-
specific EEG signals or patterns from the EEG samples
with a certain level of accuracy.

2. Electroencephalography (EEG)

Electroencephalography (EEG) is a method
used in measuring the electrical activity of the brain.
This activity is generated by billions of nerve cells,
called neurons. Each neuron is connected to thousands
of other neurons. Some of the connections are
excitatory while others are inhibitory. The signals from
other neurons sum up in the receiving neuron. When
this sum exceeds a certain potential level called a
threshold, the neuron fires nerve impulse. The
electrical activity of a single neuron cannot be
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measured with scalp EEG. However, EEG can measure
the combined electrical activity of millions of neurons.

The temporal resolution of EEG is very good:
millisecond or even better. However, the spatial
resolution is poor. It depends on the number of
electrodes, but the maximum resolution is in centimeter
range whereas, for example, in MEG, PET or fMRI it
is in millimeter range. The ongoing EEG is
characterized by amplitude and frequency. The
amplitudes of the EEG signals typically vary between
10 and 100 V (in adults more commonly between 10
and 50 V).

The electrical activity goes on continuously in
every living human’s brain. We may sleep one third of
our life times, but the brain never rests. Even when one
is unconscious the brain remains active. Much of the
time, the brain waves are irregular and no general
pattern can be observed [3].

However, there exist various properties in
EEG, which can be used as a basis for a BCI:
1. Rhythmic brain activity
2. Event-related potentials (ERPs)
3. Event-related desynchronization (ERD) and event-
related synchronization (ERS).

Table –1 Common EEG frequency ranges
Band Frequency

Range
Alpha () 8 – 13 Hz
Beta () 14-30 Hz
Delta () 0.5 – 3 HZ
Theta () 4 – 7 Hz
Mu (γ) 22 – 40 Hz

3. Two different BCI approaches
An ideal BCI could detect the user’s wishes

and commands directly. However, this is not possible
with today’s technology. Therefore, BCI researches
have used the knowledge they have had of the human
brain and the EEG in order to design a BCI. There are
basically two different approaches that have been used.
The first one called a pattern recognition approach is
based on cognitive mental tasks. The second one called
an operant conditioning approach is based on the self-
regulation of the EEG response.

4. BCI components
A typical BCI device consists of several

components. These include electrode cap, EEG
amplifiers, computer and subject’s screen. A critical
issue is how the user’s commands, i.e., the changes in
the EEG, are converted to actions on the feedback

screen or the application. This process can be divided
into different stages.

4.1 Measurement of EEG
This is done by using the electrodes. Many

BCIs use a special electrode cap, in which the
electrodes are already in the right places, typically
according to the international 10-20 system. It saves
time because the electrodes do not have to be attached
one by one. Typically, less than 10 electrodes are used
in online BCIs with sampling rates of 100-400 Hz.

4.2 Preprocessing

This includes amplification, initial filtering of
EEG signal and possible artifact removal. Also A/D
conversion is made, i.e. the analog EEG signal is
digitized.

4.3 Feature extraction

In this stage, certain features are extracted
from the preprocessed and digitized EEG signal. In the
simplest form a certain frequency range is selected and
the amplitude relative to some reference level measured
[6]. Typically the features are certain frequency bands
of a power spectrum. The power spectrum (which
describes the frequency content of the EEG signal) can
be calculated using, for example, Fast Fourier
Transform (FFT), the transfer function of an
autoregressive (AR) model or wavelet transform. No
matter what features are used, the goal is to form
distinct set of features for each mental task. If the
feature sets representing mental tasks overlap each
other too much, it is very difficult to classify mental
tasks, no matter how good a classifier is used. On the
other hand, if the feature sets are distinct enough, any
classifier can classify them.

4.4 Classification

The features extracted in the previous stage
are the input for the classifier. Different BCIs can
classify different number of classes, typically 2 to 5
classes. The classifier can be anything from a simple
linear model to a complex nonlinear neural network
that can be trained to recognize different mental tasks.
With the exception of simple threshold detection, the
classifier can calculate the probabilities for the input
belonging to each class. Usually the class with the
highest probability is chosen. However, in some BCI
protocols none of the classes may be chosen, if the
classification probability does not exceed some

                          BIOINFO Computer Engineering
                          Volume 1, Issue 1, 2011, pp-05-09
                          Available online at: http://www.bioinfo.in/contents.php?id=322

BIOINFO Computer Engineering
Volume 1, Issue 1, 2011



predefined level. This kind of classification result can
be called “nothing” or “reject”.

Some critical properties of features need to be taken
into consideration to select an algorithm [8]:
- Raw signals have a very low signal-to-noise ratio.
- Feature Vectors are often of high dimensionality.
- BCI features are non-stationary, may vary over time
and particularly over sessions, which may imply doing
training in each session.

Learning sets are usually small compared to
the number of features, because training is time
consuming for the subject, and the features often
change over time. Among the five main categories of
classifiers for BCI defined in [8] (linear classifiers,
neural networks (NN), non linear Bayesian classifiers,
nearest neighbours, and combinations of classifiers),
we focus our attention on Neural Networks and Linear
Classifiers, which are the most readily available and
widely used.

Neural Networks, along with linear classifiers
are widely used in BCI research, especially Multilayer
Perceptrons (MLPs), which consist of several layers of
neurons, each neuron being connected with the outputs
of the previous layer: the first layer is connected with
the input (ie: the vector of features) and the output of
the last layer gives the label. NN are very flexible
classifiers which have been used in many different BCI
problems (binary, multiclass, synchronous,
asynchronous...). However, since they can approximate
any continuous function, they are sensitive to
overtraining especially with noisy and non-stationary
data.

Linear discriminant analysis (LDA) is a
statistical method used to investigate differences among
multivariate classes, to determine which attributes
discriminate between the classes, and to determine an
optimal way to distinguish among classes in the linear
sense. The classic method of linear discrimination is
the so-called Fisher’s linear discriminant. It seeks a
linear combination of the signal features that
maximizes the linear class separability.
Mathematically, the discriminant function can be
described as

d(x)  = wT x + w0.
The first part, wT x, is the inner product of a

feature vector x and a weight vector w, and, in general,
it transforms a feature vector from a high-dimensional
feature space to a 1-dimensional feature space. This
transformation maximizes the distance between the
means of the two classes and simultaneously minimizes
the variance within each class. The second part, w0, is
the threshold or bias. In a two-class discrimination

problem, it can be used to assign features to classes.
For instance, if the transformed feature vector is greater
than the threshold, the feature is assigned to class 1,
otherwise it is assigned to class 0. Furthermore, the
distance between the value obtained from the linear
combination of the feature vector with the weight
vector and the threshold can be employed as a measure
of classification performance. This time varying
distance can be used to provide continuous feedback in
a BCI system.

LDA can be used as a supervised linear
statistical classifier. As a linear method, it gives the
advantage that overfitting to the training data is
unlikely, which is in contrast to nonlinear classifiers
like neural networks that have a tendency to fit the
training data very well, but have poor generalization
abilities. Another advantage of LDA is its simplicity
and computational efficiency. For that reason, LDA has
been used in a number of online and offline BCI
studies. So, for example, LDA was used to classify
AAR parameters in a two-class discrimination task
(left- and right-hand imaginary) with continuous
feedback. Preprocessed data by the CSP method, from
which band power features were derived, were
classified with LDA. Other examples where LDA was
used as classifier in brain-computer communication can
be found elsewhere.

Support Vector Machines (SVM) uses a
discriminant hyperplane that maximizes the margins,
which is known to allow better generalization. SVM
also permit non linear decision boundaries by
introducing a kernel, for example Gaussian or Radial
Basis Functions (RBF). SVM have several advantages:
they have good generalization properties and are not
too sensitive to the curse of dimensionality. SVM,
which are stable and have a low variance, are efficient
with noisy data that often contain outliers. In a review
article, Lotte et al. [8] noted that a Gaussian SVM
applied to a correlative time-frequency representation
had 86% accuracy. Non-linear SVM have also
outperformed an MLP in experiments. For these
reasons, we chose to classify our data with a Gaussian
SVM. We used a soft margin SVM [9] and had to
optimize the margin constraint in order to prevent
overfitting.
Table-2 Rate of correct classification for S1, S2 and S3

CB C HM FM

CB
S1 0.91 1 0.81
S2 0.52 0.47 0.05
S3 0.7 0.85 0.21

C
S1 0.96 0.88 1
S2 1 0.84 0.90
S3 0.58 0.66 0.52
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HM
S1 0.03 0.48 0.38
S2 0.75 0.54 0.45
S3 0.47 0.79 0.31

FM
S1 0.52 0.90 0.92
S2 1 0.53 0.83
S3 0.90 0.59 0.82

Table-3 Error rate for S1, S2 and S3 (Section 5.4.1)

CB C HM FM

CB
S1 0.03 0.48 0.37
S2 0 0.34 0
S3 0.37 0.39 0.34

C
S1 0.09 0.38 0.1
S2 0.31 0.34 0.34
S3 0.33 0.25 0.41

HM
S1 0 0.18 0.18
S2 0.4 0.24 0.25
S3 0.22 0.30 0.39

FM
S1 0.26 0 0.4
S2 0.50 0.12 0.38
S3 0.46 0.46 0.47

Table-4 Comparison of Classification results for S1, S2
and S3, with the performance measure defined in 5.4.1

CB/C CB/HM C/HM CB/FM C/FM HM/FM
S1 0.94 0.62 0.70 0.66 0.94 0.67
S2 0.80 0.64 0.71 0.65 0.76 0.66
S3 0.66 0.68 0.72 0.58 0.56 0.57

4.4.1 Statistical analysis
In task X vs task Y classification, the test data

were composed of 2n feature vectors, from which n
belonged to label X and n belonged to label Y.
Consider that the SVM was able to correctly label p X
tasks out of the set of n X tasks and q Y tasks out of n
Y tasks in the testing part. P/n is the rate of correct
classification (or recognition rate) in the set of X tasks
and q/n is the rate of correct classification in the set of
Y tasks. The corresponding numbers are reported in
Table 1 : p/n is given at (line X, column Y) and q/n is
given at (line Y, column X). For example, 0.92 (line 1,
column 2) is the proportion of correctly classified CB
task in the CB vs C testing set, meaning that the
algorithm was able to correctly classify 92% of the CB
tasks in the set, whereas 97% of the C tasks (line 2,
column 1) were correctly classified in the same set.

The error rate is the probability of
misclassification of a task, assuming it was predicted
by the SVM. Consider that the SVM classifies r tasks
with label X and s tasks with label Y (r+s=2n). Out of

the r (resp. s) tasks, only p (resp q) truly belongs to
class X (resp. Y). In Table 2, the rate (1-p/r) is reported
at (line X, column Y) and (1-q/s) is given at (line Y,
column X). For example, 0.03 (line1, column 2) is the
error rate the algorithm obtained when predicting label
CB in C vs CB classification. The lower the rate, the
more accurate the prediction of a given mental task is.

The best classification results were obtained
for high recognition rates and low error rates. To assess
global performances, we can weigh the rates of correct
classification and the error rate as below:

Performance=0.5 * λ * (p/n+q/n) + 0.5 * μ *
(p/r+q/s)

Where λ+μ=1

We calculated for each set of two tasks the
performances of the SVM using λ=μ=0.5, meaning that
error rates and rates of correct classification had the
same weight. The maximum performance is 1 whereas
chance level is 0.5. We report in Table 3 the results for
all three subjects.

5. Results
Out of the original set of four mental tasks, we

performed an SVM classification on each set of two
mental tasks (a total of 6 classifications) for each
subject. We calculated two statistics for each mental
task, as explained in section 2.3 : the rate of correct
classification and the error rate. We also calculated the
performance of the algorithm on each pair of mental
tasks as explained in section 2.3. For S1, the best
recognition results (Table 1) were observed for task C
vs task FM (97% - 92%), and task FM vs task C (100%
- 89%). Generally speaking, C was the best recognized
task (97% 89% 100%). However both task CB in CB
vs HM (100%) and task FM in FM vs HM (92%)
achieved better recognition rates than task C in C vs
HM (89%). Some tasks were not recognized better than
chance level (HM in HM vs C: 49%). For S2, the best
recognition rates were obtained for C in C vs CB and
FM in FM vs CB classification, where 100% was
achieved. However, CB was poorly recognized in both
cases (51% in C vs CB and 5% in CB vs FM), For S3,
the best recognition rates were obtained for FM in FM
vs CB (89%) and CB in CB vs HM (86%).

For S1, the lowest error rate (Table 2) was
achieved on FM in FM vs C and HM in HM vs CB
classification. Since the corresponding rate of correct
classification was very high (89%) for FM in FM vs C,
the algorithm was able to classify FM vs C in a very
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accurate way. However, for HM in HM vs CB, the
corresponding percentage of correctly labeled HM task
(Table 1) was very low (3 %). For S2, the error rate
was also 0% for CB in CB vs C and CB vs FM
classification. Generally speaking, the error rates
achieved by S3 were higher than those achieved by S1
and S2. For S3, the lowest error rate was 23% for HM
in HM vs CB classification. When assessing the global
performances for each set of two mental tasks (Table
3), the best result was achieved on CB vs C and C vs F
for S1 (0.95). In general, the algorithmic performances
were lower for S2 than for S1, the highest score
achieved by S2 being also for CB vs C. The global
results were also poorer for S3 than for S1 and S2,
although S3 outperformed S1 and S2 in two
classifications (CB vs HM and C vs HM)

6. Conclusion

We observed that the classification
performances of SVM strongly depended on the type of
mental tasks performed by the subject. The reasons
why such differences are observed still need to be
explored. Do some mental tasks imply steadier brain
states than others? Do some subjects have a stronger
power of concentration on some tasks than on others?
For example, two subjects (S1 and S2) chose a
Mathematics or applied Mathematics major at
University and obtained very good classification results
on task C classification (especially on C vs CB which
are both abstract cognitive tasks, one involving
visuospatial abilities and the other involving calculus).
A further classification with a multiclass SVM showed
that task C was the best classified task for S1 (data not
shown). To generalize our assumptions, we intend to
apply our method to asynchronous BCI and assess
whether the best labelled mental tasks are the same in
both cases to ensure the learning process we applied
here is effective in more realistic applications.
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