
Bioinfo Publications 1

WEKA - OPEN SOURCE TECHNOLOGY, ITS IMPLEMENTATION AND BENIFITS

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012, pp.-01-05.
Available online at http://www.bioinfo.in/contents.php?id=97

DESHMUKH J.J. AND TATED R.R.

Department of Computer Science & Engineering, Jawaharlal Darda Institute of Engineering & Technology, Yavatmal- 445001, MS, India.
*Corresponding Author: Email- deshmukhjanhavi65@gmail.com and ruchikatated@gmail.com

Received: February 24, 2012; Accepted: May 03, 2012

Abstract- We've been sharing software since computers were invented. Open source is about sharing source code and keeping it sharable.
WEKA (Waikato Environment for Knowledge Analysis) is open source software which consists of a collection of machine learning algorithms
for data mining tasks. WEKA implements algorithms for data preprocessing, classification, regression, clustering and association rules; it
also includes visualization tools. This paper mainly deals with what is open source, how open source software (OSS) is developed, differ-
ence between OSS and closed source software, what is the need for it to emerge, what are its advantages and WEKA. Paper also states
the effect of this type of system on the other modes of software’s such as closed or proprietary software.
Keywords- machine learning software, open source software, source code, closed source software, WEKA, data preprocessing, classifica-
tion, regression, clustering and association rules.

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012

Introduction
Open source refers to a program in which the source code (the
form of the program when a programmer writes a program in a
particular programming language) is available to the general pub-
lic for use and /or modifications from its original design free of
charge, i.e. open. Open source code is typically created as a col-
laborative effort in which programmer improve upon the code and
share the changes within the community. Open source sprouted
in the technological community as a response to proprietary soft-
ware (made and sold only by owner) owned by corporations.

Need for Open Source Software
1. Reduce dependency on closed source vendors.
2. Your annual budget does not keep up with increases in soft-

ware maintenance costs and increased costs of employee
health care.

3. More access to tools.
4. Try before you buy.
5. Great support and a 24/7 online community that responds

quickly.

6. Access to source code and the ability to customize if you de-
sire.

7. More secure than most closed source vendors.
8. Bug fixes are implemented faster then closed source vendor

[4].

Benefits of Open Source Software
The following are the advantages that open source code offers
over closed source.

Bug-Fixing
All software contains bugs. The people developing the software
will have spotted and dealt with bugs. When a bug is spotted in
proprietary software, the only people who can fix it are the original
developers, as only they have access to the source code. Open
source software is different. As users can access and change the
code, bugs tend to be more visible and more rapidly corrected.
One of the slogans of the open source movement is that ‘Given
enough eyeballs, all bugs are shallow’ (Eric Raymond, The Cathe-
dral and the Bazaar) [6].

Citation: Deshmukh J.J. and Tated R.R. (2012) Weka - Open Source Technology, Its Implementation and Benefits. World Research Jour-
nal of Computer Architecture, ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, pp.-01-05.

Copyright: Copyright©2012 Deshmukh J.J. and Tated R.R. This is an open-access article distributed under the terms of the Creative Com-
mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Bioinfo Publications 2

Security
Having access to the source code allows the user of that software
to choose the approach to security that they want. It allows you to
take ownership of your own security. It is possible to decide on
your own security priorities and to allocate resources accordingly.
Access to source code makes it easier to detect security flaws in
software, whether you are looking to fix them or exploit them. In
practice, the skills and time required to find security flaws, work
out how they can be exploited, and then initiate an attack, are
more specialized than the mundane debugging (common) skills
required closing exploits [6].

Customization
Closed source applications can only be customized or adapted
within the scope provided by the original vendor but never outside
its boundaries. Open source applications may be customized by
anyone with the requisite skill. Thus, open source software can be
readily adapted to meet specific user needs. Even if you cannot
program yourself, if you would like something added or custom-
ized you can generally pay an appropriately skilled software devel-
oper to do it for you. The introduction of competition into the mar-
ket for customizations as observed in the bug-fixing section above,
forces suppliers to offer high quality at a competitive price.
However, when modifying open source code it is good practice to
ensure that, wherever possible, changes are contributed back
upstream to the main project. Failure to do this can result in un-
necessary complexities when upgrading to newer versions of the
software [6].

Translation
With access to the source code it is easy to translate the language
of the software interface. Closed source commercial software
vendors are unwilling to translate their products into less widely
spoken languages, as the market for them would be too small to
guarantee profit [6].

Avoiding Lock-in
Organizations are said to be 'locked-in' to software products when
the costs of switching to alternatives are prohibitively high. Propri-
etary software vendors can ‘lock’ users in to their products by
ensuring that they are not readily compatible with potential rivals.
Vendors may then increase the price of product upgrades or sup-
port without too great a risk of losing existing customers.
As there is no incentive to use non-standard formats to inhibit
compatibility, open source software tends to use open standard
formats and there is little danger of being ‘locked-in’ by a vendor.
Even when non-standard formats are used in open-source code, it
is always possible to document them from the source code. On
the contrary, closed formats used by proprietary software need to
be reverse-engineered, a burdensome and expensive process that
may need to be repeated if the format is subsequently changed
[6].

Mitigation of Vendor Collapse or Product Discontinuation
Commercial software vendors go bust or get bought up from time
to time. When this happens, there is no guarantee that their soft-
ware products will continue to be available, supported, or updated.
This can result in users needing to switch products, which can be
very expensive and difficult, especially if they were heavily ‘locked-

in’ to their current product.
With open source software, this danger is greatly reduced. As the
source code is not 'owned' in the same way that proprietary
source code is, it may be picked up and developed by anyone with
an interest in a product's survival [6].

Learning from Examples
Open source code provides an excellent resource from which to
learn, and open source projects provide a practical environment in
which to test your skills. Just watching the development process
can provide an education in itself. If you choose to submit code to
an open source project, it will generally be checked and comment-
ed on by experienced programmers. Once you have convinced
the project community that your code is of appropriate quality, you
may be granted full committer rights yourself [6].

Being Part of a Community
By adopting open source software you become part of
a community of users and developers who have an interest in
working together to support each other and improve the software.
The extent to which you engage with this community is up to you,
but you may obtain the intangible benefits of goodwill if you do [6].

Cost
Open source programs can be obtained at no cost or at a very low
cost. This is often an important issue for individuals and in many
cases this has been the main reason for an individual adopting a
particular open source solution over a closed source alternative.
Other costs may arise: training, consulting, maintenance [6].

Examples of Open Source Software

 WEKA (Waikato Environment for Knowledge Analysis)

 Apache HTTP Server (web server)

 Blender (3D graphics and animation package)

 DSpace (digital repository)

 EPrints (digital repository)

 The GIMP (image editor)

 GNOME (Linux desktop environment)

 GNU Compiler Collection (GCC, a suite of compilation tools
for C, C++, etc)

 KDE (Linux desktop environment)

 LORLS (reading lists management system)

 Mailman (mailing list manager)

 Moodle (virtual learning system)

 Mozilla (web browser and email client)

 Firefox (web browser based on Mozilla)

 Thunderbird (mail client based on Mozilla code)

 MySQL (database)

 OpenOffice.org (office suite, including word processor, spread-
sheet, and presentation software)

 PHP (web development)

 Perl (programming/scripting language)

 Plone (content management system)

 PostgreSQL (database)

 Python (programming/scripting language)

 Sakai (learning management system)

 Samba (files and print server)

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012

Weka - Open Source Technology, Its Implementation and Benifits

http://en.wikipedia.org/wiki/Vendor_lock-in

Bioinfo Publications 3

 SSL-Explorer: Community Edition (browser-based SSL VPN
solution)

 TeX (typesetting language)

Introduction to WEKA
WEKA is a data mining system developed by the University of
Waikato in New Zealand that implements data mining algorithms
using the JAVA language. WEKA is a state of-the-art facility for
developing machine learning (ML) techniques and their application
to real-world data mining problems. It is a collection of machine
learning algorithms for data mining tasks. The algorithms are ap-
plied directly to a dataset. WEKA implements algorithms for data
preprocessing, classification, regression, clustering and associa-
tion rules; It also includes visualization tools. The new machine
learning schemes can also be developed with this package. WE-
KA is open source software issued under General Public License
[5].

Features of WEKA
Data preprocessing
Data preprocessing as well as a native file format ARFF (Attribute
Relation File Format), WEKA supports various other formats (for
instance CSV (Comma Separated Values (text file)), Mat lab
ASCII files), and database connectivity through JDBC. Data can
be filtered by a large number of methods (over 75), ranging from
removing particular attributes to advanced operations such as
principal component analysis. The XRFF (Xml attribute Relation
File Format) is a representing the data in a format that can store
comments, attribute and instance weights.
A complete description of the ARFF file Format can be found here
% This is a toy example, the UCI weather dataset.
% Any relation to real weather is purely coincidental.
Comment lines at the beginning of the dataset should give an
indication of its source, context and meaning.
@relation golfWeatherMichigan_1988/02/10_14days
Here we state the internal name of the dataset. Try to be as com-
prehensive as possible.
@attribute outlook {sunny, overcast rainy}
@attribute windy {TRUE, FALSE}
Here we define two nominal attributes, outlook and windy. The
former has three values: sunny, overcast and rainy; the latter two:
TRUE and FALSE. Nominal
Values with special characters, commas or spaces are enclosed
in ’single quotes’.
@attribute temperature real
@attribute humidity real
These lines define two numeric attributes. Instead of real, integer
or numeric can also be used. While double floating point values
are stored internally, only seven decimal digits are usually pro-
cessed.
@attribute play {yes, no}
The last attribute is the default target or class variable used for
prediction. In our case it is a nominal attribute with two values,
making this a binary classification problem [2,3].

Classification
One of WEKA’s drawing cards is the more than 100 classification
methods it contains. Classifiers are divided into “Bayesian” meth-

ods (Naive Bayes, Bayesian nets, etc.), lazy methods (nearest
neighbor and variants), rule-based methods (decision tables, On-
eR, RIPPER), tree learners (C4.5, Naive Bayes trees, M5), func-
tion-based learners (linear regression, SVMs, Gaussian process-
es), and miscellaneous methods. Furthermore, WEKA includes
Meta-classifiers like bagging, boosting, stacking; multiple instance
classifiers; and interfaces for classifiers implemented in Groovy
and Jython.

Selecting a Classifier
At the top of the classify section is the Classifier box. This box has
a text field that gives the name of the currently selected classifier,
and its options. Clicking on the text box with the left mouse button
brings up a GenericObjectEditor dialog box, just the same as for
filters, which you can use to configure the options of the current
classifier. With a right click (or Alt+Shift+left click) you can once
again copy the setup string to the clipboard or display the proper-
ties in a GenericObjectEditor dialog box. The Choose button al-
lows you to choose one of the classifiers that are available in WE-
KA [2,3].

Clustering
Unsupervised learning is supported by several clustering
schemes, including EM based mixture models, k-means, and
various hierarchical clustering algorithms. Though not as
many methods are available as for classification. Most of the
classic algorithms are included. Selecting and configuring
objects. Clicking on the clustering scheme listed in the Clus-
terer box at the top of the window brings up a GenericOb-
jectEditor dialog with which to choose a new clustering
scheme.

Cluster Modes
The Cluster mode box is used to choose what to cluster and
how to evaluate the results. The first three options are the
same as for classification: Use training set, Supplied test set
and Percentage split. Now the data is assigned to clusters
instead of trying to predict a specific class. The fourth mode,
Classes to clusters evaluation, compares how well the chosen
clusters match up with a pre-assigned class in the data. The
drop-down box below this option selects the class, just as in
the Classify panel. An additional option in the Cluster mode
box, the Store clusters for visualization tick box, determines
whether or not it will be possible to visualize the clusters once
training is complete. When dealing with datasets that are so
large that memory becomes a problem it may be helpful to
disable this option [2,3].

Attribute Selection
The set of attributes used is essential for classification perfor-
mance. Various selection criteria and search methods are availa-
ble. In box titled Attributes. There are four buttons, and beneath
them is a list of the attributes in the current relation. The list has
three columns:
1. No. - A number that identifies the attribute in the order they

are specified in the data file.
2. Selection tick boxes. These allow you select which attributes

are present in the relation.

Deshmukh J.J. and Tated R.R.

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012

Bioinfo Publications 4

3. Name- The name of the attribute, as it was declared in the
data file.

When you click on different rows in the list of attributes, the fields
change in the box to the right titled Selected attribute. This box
displays the characteristics of the currently highlighted attribute in
the list:
1. Name- The name of the attribute, the same as that given in

the attribute list.
2. Type- The type of attribute, most commonly Nominal or Nu-

meric.
3. Missing- The number (and percentage) of instances in the

data for which this attribute is missing (unspecified).
4. Distinct- The number of different values that the data contains

for his attribute.
5. Unique- The number (and percentage) of instances in the data

having a value for this attribute that no other instances have.
Below these statistics is a list showing more information about the
values stored in this attribute, which differ depending on its type. If
the attribute is nominal, the list consists of each possible value for
the attribute along with the number of instances that have that
value. If the attribute is numeric, the list gives four statistics de-
scribing the distribution of values in the data—the minimum, maxi-
mum, mean and standard deviation. And below these statistics
there is a colored histogram, colour-coded according to the attrib-
ute chosen as the Class using the box above the histogram. (This
box will bring up a drop-down list of available selections when
clicked.) Note that only nominal Class attributes will result in a
colour-coding. Finally, after pressing the Visualize All button, his-
tograms for all the attributes in the data are shown in a separate
window. Returning to the attribute list, to begin with all the tick
boxes are unticked. They can be toggled on/off by clicking on
them individually. The four buttons above can also be used to
change the selection [2,3].

Association
Setting Up
This panel contains schemes for learning association rules, and
the learners are chosen and configured in the same way as the
clusterers, filters, and classifiers in the other panels.

Learning Associations
Once appropriate parameters for the association rule learner have
been set, click the Start button. When complete, right-clicking on
an entry in the result list allows the results to be viewed or saved
[2].

Data Visualization
Data can be inspected visually by plotting attribute values against
the class, or against other attribute values. Classifier output can
be compared to training data in order to detect outliers and ob-
serve classifier characteristics and decision boundaries. For spe-
cific methods there are specialized tools for visualization, such as
a tree viewer for any method that produces classification trees, a
Bayes network viewer with automatic layout, and a dendrogram
viewer for hierarchical clustering. WEKA also includes support for
association rule mining, comparing classifiers, dataset generation,
facilities for annotated documentation generation for source code,
distribution estimation, and data conversion. WEKA’s visualization

section allows you to visualize 2D plots of the current relation.

The Scatter Plot Matrix
When you select the Visualize panel, it shows a scatter plot matrix
for all the attributes, colour coded according to the currently se-
lected class. It is possible to change the size of each individual 2D
plot and the point size, and to randomly jitter the data (to uncover
obscured points). It also possible to change the attribute used to
colour the plots, to select only a subset of attributes for inclusion
in the scatter plot matrix, and to sub sample the data. Note that
changes will only come into effect once the Update button has
been pressed [2,3].

Application with WEKA
In most data mining applications the machine learning component
is just a small part of a far larger software system. To accommo-
date this, it is possible to access the programs in Weka from in-
side one’s own code. This allows the machine learning sub prob-
lem to be solved with a minimum of additional programming.
For example, Figure shows a Weka applet written to test the usa-
bility of machine learning techniques in the objective measure-
ment of mushroom quality. Image processing a picture of a mush-
room cap (at left in Figure) provides data for the machine learning
scheme to differentiate between A, B and C grade mushrooms [1].

Fig. 1- Mushroom grading applet

Advantages

 It is used in the machine learning and data mining com-
munity as an educational tool for teaching both applica-
tions and technical internals of machine learning algo-
rithms.

 It is also used as a research tool for developing and em-
pirically comparing new techniques.

 It is applied academic fields, and in commercial settings.

 It is free and open-source software.

Conclusion
From the above discussion we can conclude that Open-source
software is often effectively publicly owned and can be used for
key public interest activities, vs. private ownership, which prevents

Weka - Open Source Technology, Its Implementation and Benifits

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012

Bioinfo Publications 5

this from happening.
At present to access and use any information is dependent on
private companies which design software to benefit their share-
holders. By using open source software, we can modify the
source code and improve as well as increase the functionality of
that software.
As the technology of machine learning continues to develop and
mature, learning algorithms need to be brought to the desktops of
people who work with data and understand the application domain
from which it arises. It is necessary to get the algorithms out of the
laboratory and into the work environment of those who can use
them. Weka is a significant step in the transfer of machine learn-
ing technology into the workplace.

References
[1] Kusabs N., Bollen F., Trigg L., Holmes G. and Inglis S. (1998)

Proc New Zealand Institute of Agricultural Science and the
New Zealand Society for Horticultural Science Annual Con-
vention, Hawke’s Bay, New Zealand, 51.

[2] Remco R. Bouckaert, Eibe Frank, Mark Hall, Richard Kirkby,
Peter Reutemann, Alex Seewald and David Scuse (2008)
WEKA Manual for Version 3-6-0.

[3] Remco R. Bouckaert, Eibe Frank, Mark A. Hall, Geoffrey
Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H.
Witten (2010) Journal of Machine Learning Research 11,
2533-2541.

[4] http://it.toolbox.com/blogs/madgreek/10-reasons-why-you-
need-an-open-source-strategy-18891.

[5] http://www.cs.waikato.ac.nz/ml/weka.
[6] http://www.webopidea.com.

Deshmukh J.J. and Tated R.R.

World Research Journal of Computer Architecture
ISSN: 2278-8514 & E-ISSN: 2278-8522, Volume 1, Issue 1, 2012

http://it.toolbox.com/blogs/madgreek/10-reasons-why-you-need-an-open-source-strategy-18891
http://it.toolbox.com/blogs/madgreek/10-reasons-why-you-need-an-open-source-strategy-18891
http://www.cs.waikato.ac.nz/ml/weka
http://www.webopidea.com

