
Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010, PP-01-05

Copyright @ 2010, Bioinfo Publications
Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010

Social-organizational participation difficulties in requirement
engineering process: A study

Dhirendra Pandey
1
, Suman U.

2
, Ramani A.K.

2

1
Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India

prof.dhiren@gmail.com
2
School for Computer Science & IT, Devi Ahilya Vishwavidyalaya, Indore, MP, India,

ugrasen123@yahoo.com, ramani.scs@dauniv.ac.in

Abstract- Requirement engineering is a technique for analyzing and documenting the requirement of users.
Requirement engineering is a necessary prerequisite to build a healthy participation between customers and
the organization for better understanding the requirements from customers by the software developers. The
requirements engineering phase of software development process is characterized by the strength and
significance of participation activities. During this phase, the various stakeholders must be able to
communicate their requirements to the analysts and the analysts need to be able to communicate the
specifications they generate back to the stakeholders for validation. This paper describes a field
investigation into the problems of participation between disparate communities involved in the requirements
specification activities. The results of this study are discussed in terms of their relation to three major
participation barriers: 1) ineffectiveness of the current participation channels; 2) restrictions on
expressiveness imposed by notations; and 3) social and organizational barriers. The results confirm that
organizational and social issues have great influence on the effectiveness of participation.
Keywords: Requirement engineering, software project, participation difficulties, questionnaire, interview.

1. Introduction
Requirement specification is an important
dimension of requirement engineering process
which is based on domain understanding, i.e.
organizational, technical, functional, and social.
Ideally, the requirements team members are
selectively recruited so that both the levels and
distribution of knowledge within the team cover
all aspects of the domain [1]. However, this is
seldom the case because of knowledge shortfalls
such as the thin spread of application domain
knowledge in most organizations [2]. In general,
individual members do not have all the
knowledge required for the project and must
acquire additional information before
accomplishing productive work [3]. Knowledge
acquisition and sharing can only be achieved
through effective participation between the
various stakeholders. It is widely recognised that
participation problems are a major factor in the
delay and failure of software projects [2].
This is especially true of “socio-technical”
software systems, which must exist in a complex
organizational setting. The organizational
domains into which such software is introduced
are often too intricate and fluid to be fully
understood. In this situation, misunderstandings
and conflicting views are rife. There have been a
number of field studies into software engineering
in general and requirements engineering in
particular [4]. Our study differs from previous
investigations in that it focuses on the
participation characteristics of the requirements
engineering process. Moreover, our investigation
not only utilized the experience of software
engineering practitioner, it also reflects the views
and experiences of end-users based on their

recent software procurement projects. The
domain of our study was the requirements
engineering phase of fully customized software
systems development projects. The field study
was conducted in two stages using two data
gathering methods like interviews and
questionnaires.

2. Research Method
A combination of learning, data gathering and
analysis techniques were applied to investigate
the participation problems, their causes and
consequences. The two principle sources of
information were the literature and the empirical
study. The ever growing literature on software
engineering in general and requirements
engineering in particular was surveyed to gather
information about the software development
problems, especially those that occur in the early
phases, and the sort of tools and techniques that
were or are being developed to overcome these
problems. A cross section of social science and
computer supported co-operative work (CSCW)
literature was also surveyed to help in the
analysis of the empirical results and reasoning
about the possible causes and consequences of
participation difficulties.

2.1 Empirical Work
The aim of the empirical part of this research is to
provide material for hypotheses, to aid the
identification and reasoning about the
participation difficulties and their causes and
consequences. Although there are inherent
complexities in combining qualitative and
quantitative methods, it was decided that such an
empirical base was essential to avoid

Social-organizational participation difficulties in requirement engineering process: A study

Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010 2

unsupported assertions. The empirical work was
carried out in two stages. The first consisted of
informal interviews and observations to establish
some knowledge about practices and
methodologies of both developers and their
customers. These interviews concentrated mainly
on the participation channels between agents
participating in any software development project,
as well as on the problems that can be attributed
to the ineffectiveness of those participation
channels. Other management and technical
issues were also discussed. Most of these
interviews were taped for further analysis and
reference.
The second stage of our empirical work was
based on two questionnaires; one for customer
and one for the software developers. These
questionnaires were designed to get a
quantitative evaluation for the various aspects of
the participation activities during Requirement
Engineering. The developers were all involved in
either developing a new software system or
maintaining an existing one. Some were also
involved in the provision of hardware systems.
Questionnaires were sent to some companies in
the India. Responses represent a cross-section
of the companies that were targeted.
The interviews showed that practitioners, no
matter how experienced, found it easier to be
precise about facts and procedures than about
opinions and judgments. Therefore we could not
simply ask for direct judgments for each of our
hypothesis. Instead, each hypothesis was tested
in terms of its outward effects and indicators.
Most of these turned out to be multi-dimensional
and thus had to be measured through more than
one indicator. For example, the effect of
organizational power was multi-dimensional in
that it governs both the choice participants and
their working procedures. It had to be tested in
two separate questions each of which had a
number of variable answers. In order to get a
value for the strength of feeling for each indicator,
we employed a Likert Scale method, also known
as semantic differential [4]. For each variable we
used one to five values of strength in relation to
the other variables within the same question.

3. Participation Difficulties
Large software projects suffer serious
breakdowns in co-ordination and participation
throughout their development life cycle. In this
section we present some of the causes for the
breakdown of participation during the
requirements engineering phase of software
development projects.

3.1 One Way Participation Channels
In many ways, software engineering
methodologies are participation methodologies.
Much emphasis is placed on the notations used

to convey information both within the
development team and with the various
stakeholders. Ideally, the channels of
participation between these various communities
would be perfect, so that all knowledge is shared.
In practice, it is expensive and time-consuming to
support extensive participation between the
communities, and the channels are restricted to
one way participation in the form of specification
documents. Some researchers have observed
that documentation is ineffective for participation,
as it does not help resolve Misunderstandings [2].
Nevertheless, an implicit “over-the-wall” model
exists in most software development projects: at
each stage in the project, a specification is
thrown over a wall to the next team who are
waiting to proceed with the next phase. The
metaphorical wall is sometimes encouraged by
management practices, but more often is merely
a result of the practicalities of coordinating a
large team. The results of this study showed that
specification documents are still the most
common format in which analysts communicate
requirements back to their clients for validation
(see table-2).

Q- In what format did you get the analyst’s
interpretation of your requirement?

There are two standard approaches to this
problem. The first emphasizes the development
of better notations, and effective use of electronic
repositories. The second emphasizes the
importance of contact between the development
team and other stakeholders, and has given rise
to practices such as end-user participation and
ethnographic techniques. Each of these
approaches has its own set of problems, and
neither directly addresses the question of
facilitating appropriate and effective participation
over restricted channels. Our study showed that
practitioners find it easier to adapt a compromise
of the two approaches by enriching notations with
natural language descriptions and by utilizing the
personal contact of face-to-face discussions.

3.2 Familiar Participation
Organizations are, traditionally, described in
terms of an Organizational chart. This is often the
first thing handed out to anyone inquiring about
the structure of the organization. However, many
important power and participation relationships
are not represented in the organizational chart.
One of the researchers [6] makes an analogy
between the organizational chart and a road
map, where the map is invaluable for finding
towns and their connecting roads, but it tells us
nothing about the economic or social
relationships between the regions. Although, very
useful in terms of providing information about
formal authority and the division of organizational
units, the organizational chart does not tell us

Dhirendra Pandey
1
, Suman U, Ramani AK

Copyright @ 2010, Bioinfo Publications
Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010

3

anything about the informal relationships that
exist in every organization.
During the interviews that we conducted with
practitioners, they outlined many difficulties that
are caused by unexpected interactions between
elements of the system, be it software modules
or humans. In spite of the time and effort spent
on studying organizational structures and the flow
of power and information through them, our
subjects admit that they can never account for all
possible interactions and often have to backtrack
as a result of discovering a new relation or line of
participation that has to be incorporated into the
system. On the other hand, such informal
participation channels can be destroyed by
rivalries and animosities, which can discourage
co-operation and affect the normal flow of
information.

Q- How do you exchange information with the
software development team?

3.3 The lost link
The inability to trace the human sources of actual
requirements and their related information is
identified as the crux of the requirements
traceability problem [7]. Requirements
Traceability is vital for all phases of the software
development cycle to aid reasoning about
requirements and justify changes. Our study
showed that the traceability problem is
particularly serious in the later stages of
requirements engineering and in cases when
new requirements are introduced late in the
project life cycle. In order to check that newly
introduced requirements do not conflict with
existing requirements, it is often necessary to re-
establish participation with the human sources of
existing requirements. This is particularly
problematic, because by this time the analysts
may have reduced, or even halted, contact with
the end-users of this software and may even
have started working on a new project, while their
programmers get on with later phases of this
project.

Q- How do you established traceability and
responsibility for requirements?

Table 4 presents the links that practitioners use
in order to establish requirements traceability to
the requirements sources. We can see from the
above results that most analysts link the
requirements only very generally to user groups
and departments, which means that traceability is
not direct. Only 15% linked the requirements to
their individual sources by name, which means
that those sources can be traced directly if
necessary. The link to job titles might sound like
a good idea, but it does not work in dynamic

organizations where people move between jobs
and even move between organizations.

3.4 The Notations conflict
While programmers, software engineers and
analysts are happy talking about the system in
terms of it procedures and data structures, end-
users prefer to talk about the system in terms of
its general behavior, functionality and
applications. The different communities involved
in the specification process prefer different types
of notation, and various people will be unfamiliar
with various notations. For example, a user will
not want to learn to read formal specification
languages, but the programmer may require
these to obtain an appropriate level of detail. It is
often the analyst's responsibility to choose the
notations that will best describe the system for
each interest group. Thereafter, the chosen
notations are used to explain the system
differently to each group. In doing so, the analyst
combines the notations with other explanation
techniques, to make notations easier to read and
understand.
The choice of the explanatory tools utilized by the
analysts and the extent to which they are needed
depend on the notation used and the audience’s
familiarity with the notation. Typically, two types
of knowledge are used as a high level framework
to anchor detailed knowledge: the control flow
information, which might be represented by
specialized notations such as pseudo code and
flowcharts, and data structure information, which
might be represented using diagrams or a textual
description [8]. Some software programs such as
the traditional numerical analysis systems have
complex control structure with relatively simple
data structures. On the other hand, traditional
commercial applications have complex data
structures with relatively simple control flow.
Some of the researchers [9] conducted an
experiment to compare comprehension with nine
forms of program description including natural
language, a program design language, flowcharts
and hierarchical diagrams. They found different
results for different types of questions, but no
particular style appeared to dominate. However,
in their study of program coding from the nine
notations, two researchers [10] found that the
program design language and the flowcharts
diagrams were more helpful than natural
language descriptions.

Regardless of the chosen notations, most users
express their requirements in natural language.
Then it is the job of the analyst to translate
requirements statements into some kind of
representational objects in a domain model.
Once the requirements are modeled, they are
presented to end-users for validation. At this
stage the analysts are faced with another
participation problem when end-users are not

Social-organizational participation difficulties in requirement engineering process: A study

Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010 4

familiar with the notations used to model their
requirements. On the other hand, when analysts,
under pressure to keep up with the project
schedule, pass raw natural language
requirements to programmers, then time is
wasted in trying to interpret them. In one case he
had to read over a page of text to understand the
requirements for a screen layout for a particular
database form.

Qu- How often do you use each of the following
methods to help client understand the
representation of their requirements?

5. Conclusion
There are lots of difficulties in trying to make
effective participation channels between social
and organizational elements. One of the dangers
is that each community interprets things in the
light of their own background assumptions. This
is especially problematic with non-interactive
participation, such as specification documents,
where there is no opportunity to check that the
reader has interpreted them as was intended.
Some of the researchers [11]. Points out a
fundamental problem to do with the participation
of abstract concepts, in that requirements
specifications “document what it is that the
analyst thought it was that the problem owner
said he thought he might want”. The uncertainties
that McDermid describes propagate and multiply
at each exchange of information. Some
researchers uses the term “Ontological Drift” to
describe the change in meaning of abstract terms
as they are passed between different
communities[12]. In this paper we noted that
documents are a poor substitute for interpersonal
participation. A pressing and practical problem is
to find-out more about the communicational
weaknesses of current notations and methods so
we can accommodate for their weaknesses. For
each concern, we need to determine what types
of question that concern may wish to make of a
description produced in a notation. This can only
be achieved by observing the meetings and
conversations in which descriptions are referred
to. The practical implications of theses findings
include: indicating where and how organizational
power is used, outlining the extent to which
software practitioners rely on documents as the
main participation medium, revealing the dangers
of the technical gap between the two main
communities and presenting informal
participations as the means for bridging that
differences.

References

[1] Amer Al-Rawas1 and Steve
Easterbrook (1996) Proceedings of
the First Westminster Conference
on Professional Awareness in

Software Engineering, Royal
Society, London.

[2] Curtis B., Krasner H. & Iscoe N. (1988)
Participations of the ACM, 31(11),
1268-1287.

[3] Walz D., Elam J. and Curtis B. (1993)
Participations of the ACM 36(10),
pp.63-77.

[4] Curtis B. (1990) In Diaper et. al. (Eds),
Human-Computer Interaction -
INTERACT '90, Elsevier Science
Publishers, North-Holland. 35-40.

[5] Frankfort-Nachmiais C. and Nachmiais
D. (1992), 4

th
 Ed., Edward Arnold.

[6] Mintzberg H. (1979) Prentice-Hall.
[7] Gotel O. and Finkelstein A. (1994)

Proceedings of the First IEEE
International Conference on
Requirements Engineering,
Colorado springs,.94-101.

[8] Shneiderman B. (1982) In Ledgard, H.
(Eds), Technical Notes: Human
Aspects of
Computing,Participations of the
ACM 25 (1), 55-63.

[9] Sheppard S. B., Kruesi E. and Curtis B.
(1981) Proc. 5th Int. Conference on
Software Engineering, San Diego,
CA, available from IEEE,1981, 207-
214.

[10] Sheppard S. B. and Kruesi E. (1981)
Proc. Trends and Applications:
Advances in Software Technology.
 Held at NBS, Gaithersburg,
MD, available from IEEE, 7-13.

[11] McDermid J. A. (1993) In M. Bickerton
& M. Jirotka (Eds.), Requirements
Engineering. London: Academic
Press.

[12] Robinson M. and Bannon L. (1991) In
L. Bannon, M. Robinson, & K.
Schmidt(Eds.), Proceedings of
the Second European Conference
on Computer- Supported Co-
 operative Work (ECSCW-91),
25- 27 September, Amsterdam, the
Netherlands. 219-233.

Dhirendra Pandey
1
, Suman U, Ramani AK

Copyright @ 2010, Bioinfo Publications
Software Engineering, ISSN: 2229–4007 & ISSN: 2229–4015, Volume 1, Issue, 1, 2010

5

Table1- Interview sample size and questionnaires
responses

Study Developers
(S/W
Practitioners)

Customers
(End-users of
the software)

Interview
Sample Size

Questionnaires
Responses

5

42

5

37
(21
Participating
and 16 Non-
participating)

Table2 -The formats in which requirements are

communicated

Formal specification documents 40%

Informal combination of documents and
discussion

30%

Informal specification documents 11%

Natural language discussion 19%

Table 3- Methods in which end-users exchange

information with analysts

Face to face discussion 45%

Formal meeting 25%

Telephone conversation 12%

Using documents 18%

Table 4- Links that software practitioners use to

trace requirements sources

Requirements are linked to user group
and departments

65%

Requirements are linked to individual
source by name

15%

Requirements are linked to job titles of
their source

20%

Fig. 1-Methods of providing additional
explanation.

