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Abstract- Toxicogenomics is a field of science that deals with the collection, interpretation, and 
storage of information about gene and protein activity within particular cell or tissue of an 
organism in response to toxic substances. Toxicogenomics combines toxicology with genomics or 
other high throughput molecular profiling technologies such as transcriptomics, proteomics and 
metabolomics. Toxicogenomics endeavors to elucidate molecular mechanisms evolved in the 
expression of toxicity, and to derive molecular expression patterns i.e., molecular biomarkers that 
predict toxicity or the genetic susceptibility to it. 
 
 
Introduction 
Toxicogenomics is a rapidly developing field 
that promises to aid scientists in 
understanding the molecular and cellular 
effects of chemicals in biological systems. 
This field encompasses global assessment 
of biological effects using technologies such 
as DNA microarrays or high throughput 
NMR and protein expression analysis, 
genomic, proteomic, metabonomic that may 
extend our understanding of toxicology and 
highlights the toxicity studies. 
This broad definition is supported by the 
United States Environmental Protection 
Agency stating that "the term "genomics" 
encompasses a broader scope of scientific 
inquiry and associated technologies than 
when genomics was initially considered. A 
genome is the sum total of all an individual 
organism's genes. Thus, genomics is the 
study of all the genes of a cell, or tissue, at 
the DNA (genotype), RNA (transcriptome), 
or protein (proteome) levels. Genomics 
methodologies are expected to provide 
valuable insights for evaluating how 
environmental stressors affect cellular/tissue 
function and how changes in gene 
expression may relate to adverse effects. 
However, the relationships between 
changes in gene expression and adverse 
effects are unclear at this time and may 
likely be difficult to elucidate.  
In pharmaceutical research toxicogenomics 
is more narrowly defined as the study of the 
structure and function of the genome as it 
responds to adverse xenobiotic exposure. It 
is the toxicological subdiscipline of 
pharmacogenomics, which is broadly 
defined as the study of inter-individual 
variations in whole-genome or candidate 

gene single-nucleotide polymorphism maps, 
haplotype markers, and alterations in gene 
expression that might correlate with drug 
responses (Lesko and Woodcock 2004, 
Lesko et al. 2003). Though the term 
toxicogenomics first appeared in the 
literature in 1999 (Nuwaysir et al.) it was 
already in common use within the 
pharmaceutical industry as its origin was 
driven by marketing strategies from vendor 
companies. The term is still not universal 
accepted, and others have offered 
alternative terms such as chemogenomics to 
describe essentially the same area (Fielden 
et al., 2005). 
The nature and complexity of the data (in 
volume and variability) demands highly 
developed processes for of automated 
handling and storage. The analysis usually 
involves a wide array of bioinformatics and 
statistics., regularly involving classification 
approaches. 
In pharmaceutical Drug discovery and 
development toxicogenomics is used to 
study adverse, i.e. toxic, effects, of 
pharmaceutical drugs in defined model 
systems in order to draw conclusions on the 
toxic risk to patients or the environment. 
Both the EPA and the U.S. Food and Drug 
Administration currently preclude basing 
regulatory decision making on genomics 
data alone. However, they do encourage the 
voluntary submission of well-documented, 
quality genomics data. Both agencies are 
considering the use of submitted data on a 
case-by-case basis for assessment 
purposes (e.g., to help elucidate mechanism 
of action or contribute to a weight-of-
evidence approach) or for populating 
relevant comparative databases by 
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encouraging parallel submissions of 
genomics data and traditional toxicologic 
test results. 
 
History and Background 
The field of toxicology is defined as the 
study of stressors and their adverse effects. 
One sub-discipline deals with hazard 
identification, mechanistic toxicology, and 
risk assessment. Increased understanding 
of the mechanism 
of action of chemicals being assayed will 
improve the efficiency of these tasks. 
However, the derivation of mechanistic 
knowledge traditionally evolves from 
studying a few genes at a time in order to 
implicate their function in mediation of 
toxicant effects. Undoubtedly, this process 
has to be accelerated to monitor and discern 
the effects of the thousands of new 
compounds developed by the chemical and 
pharmaceutical industries. There is a need 
for a screening method that can offer some 
insight into the potential adverse outcome(s) 
of new drugs allowing the intelligent 
advancement of compounds into late stages 
of safety evaluation. 
 
Mechanism of Toxicity 
The study and use of toxicogenomics 
approaches aids our understanding of the 
mechanisms of toxicity. Bulera and 
coworkers identified several groups of genes 
reflective of mechanisms of toxicity and 
related to a hepatotoxic outcome following 
treatment. An example of the advantage of 
using a toxicogenomics approach to 
understand mechanisms of chemical toxicity 
was the observation of liver tumor promoters 
microcystin-LR and phenobarbital, induced a 
parallel set of genes. Based on this 
information the authors speculated that liver 
tumor promotion by both compounds may 
occur by similar mechanisms. These 
observations derived through the application 
of microarrays to toxicology to understand 
mechanisms and our ability to identify 
compounds with similar mechanisms of 
toxicity. However, it would have been 
advantageous to utilize gene expression 
data to map relevant pathways depicting 
mechanism(s) associated with the 
hepatotoxicity of each compound. 
Collectively, in the future, researchers may 
attempt to build “transcriptome” or “effector 
maps” to aid to visualization of pathway 

activation.Huang and coworkers utilized 
cDNA microarrays to investigate gene 
expression patterns of cisplatin-induced 
nephrotoxicity. In these studies, rats were 
treated daily for 1 to 7 days with cisplatin at 
a dose that resulted in necrosis of the renal 
proximal tubular epithelial cells but no 
hepatotoxicity at day 7. Gene expression 
patterns for transplatin, an inactive isomer, 
was examined and revealed little gene 
expression change in the kidney, consistent 
with the lack of nephrotoxicity of the 
compound. Cisplatin-induced gene 
expression alterations were reflective of the 
histopathological changes in the kidney i.e. 
gene related to cellular remodeling, 
apoptosis, and alteration of calcium 
homeostasis. 
 
Technological Aspects 
 
Protein Expression 
Gene expression alone is insufficient to 
understand the toxicant and the disease 
they cause. Abnormalities in protein 
production or function are expected in 
response to toxicant exposure and the onset 
of disease states. To understand the 
complete mechanism of toxicant action, it is 
necessary to identify the protein alterations 
associated with that exposure and to 
understand how these changes affect 
protein/cellular function. Unlike classical 
genomic approaches that discover genes 
related to toxicant induced disease, 
proteomics can aid to characterize the 
disease process directly by capturing 
proteins that participate in the disease. The 
lack of a direct functional correlation 
between gene transcripts and their 
corresponding proteins necessitates the use 
of proteomics as a tool in toxicology. 
Proteomics is the systematic analysis of 
expressed proteins in tissues, by isolation, 
separation, identification and functional 
characterization of proteins in a cell, tissue, 
or organism. Proteomics, under the umbrella 
of toxicogenomics, involves the 
comprehensive functional annotation and 
validation of proteins in response to toxicant 
exposure. Understanding the functional 
characteristics of proteins and their activity 
requires a determination of cellular 
localization and quantitation, tissue 
distribution, post-translational modification 
state, domain modules and their effect on 
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protein interactions, protein complexes, 
ligand binding sites and structural 
representation. Currently, the most 
commonly used technologies for proteomics 
research are2-dimensional (2-D) gel 
electrophoresis for protein separation 
followed by mass spectrometry analysis of 
proteins of interest. Analytical protein 
characterization with multidimensional liquid 
chromatography/mass spectrometry 
improves the throughput and reliability of 
peptide identity. Matrix Assisted Laser 
Desorption Mass Spectrometry (MALDI-MS) 
has become a widely used method for 
determination of various biological 
molecules including peptides. Other 
technologies such as Surface-Enhanced 
Laser Desorption/Ionization (SELDI) and 
antibody arrays are also proving to be 
useful. Various projects are conducted 
investigate biochemical changes and identify 
biomarkers associated with acute renal 
injury following a single dose of puromycin 
aminonucleoside to Sprague Dawley rats 
using a combination of 2-D PAGE, reverse 
phase HPLC, mass spectrometry, amino 
acid analysis and 1H-NMR spectroscopy of 
urine as well as routine plasma clinical 
chemistry and tissue histopathology. The 2-
D PAGE of urine showed patterns of protein 
change according to the limited profiles for 
glomerular toxicity derived by use of other 
techniques and allowed a more detailed 
understanding of the nature and progression 
of the proteinuria associated with glomerular 
toxicity. The 2-D PAGE approach taken by 
the various investigators, coupled with 
computational analysis of the accompanying 
data gradually on the collected samples, 
lead to the detection of proteinuria at a 
considerably earlier time point than has 
typically been reported following puromycin 
aminonucleoside exposure, thus potentially 
defining relatively early biomarkers which 
are superior to the traditional gross urinary 
protein determination procedure. A serious 
limitation of proteomic analysis using 2-D gel 
electrophoresis is the sensitivity of detection. 
Analysis of low abundance proteins by 2-D 
electrophoresis is challenging due to the 
presence of high abundant proteins such as 
albumin, immunoglobulin heavy and light 
chains, transferrin, and haptoglobin in the 
sera or actin, tubulin, and other structural 
proteins when analyzing tissue. Selective 
removal of these proteins from protein 

samples via column-based immunoaffinity 
procedures allows for more sample to be 
loaded on gels thereby facilitating 
visualization of low abundant proteins that 
would otherwise be obscured by more 
abundant ones.  
 
Metabolite Analysis by NMR 
Genomic and proteomic methods do not 
offer the information needed to gain 
understanding of the resulting output 
function in a living system. Neither approach 
addresses the dynamic metabolic status of 
the whole animal. The metabonomic 
approach is based on the premise that 
toxicant-induced pathological or 
physiological alterations result in changes in 
relative concentrations of endogenous 
biochemicals. Metabolites in body fluids 
such 
as urine, blood, or cerebrospinal fluid (CSF), 
are in dynamic equilibrium with those inside 
cells and tissues, thus toxicant induced 
cellular abnormalities in tissues should be 
reflected in altered biofluid compositions. An 
advantage of measuring changes in body 
fluids is that these samples are much more 
readily available from human subjects. High 
resolution NMR spectroscopy (1H NMR) has 
been used in a high-throughput fashion to 
simultaneously detect various biological 
chemicals in urine, bile, blood plasma, milk, 
saliva, sweat, gastric juice, seminal, 
amniotic, synovial and cerebrospinal fluids. 
In addition, intact tissue and cellular 
suspensions have also been successfully 
analyzed for metabolite content using 
magic-angle-spinning 1H NMR 
spectroscopy.  
 
Toxicogenomics and Cancer 
DNA encodes for RNA, RNA encodes for 
proteins, and these proteins regulate all the 
processes. Most proteins are enzymes 
which have a catalytic function in cell, 
whereby substances are converted 
metabolised into another substance. This 
may also imply that another protein is 
modified; this modification may lead to 
activation or inactivation of protein. 
Controlling the activity of genes, and with 
that of proteins such as enzymes and 
therefore also the metabolites which reside 
in cell, is very complex and takes place at 
several steps: 1) By the cell itself, for  
example apoptosis, 2) By other cells in the 
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body, for example in the immune system, 
where one immune cell may influence the 
functioning of another and as a result of that, 
becomes a regulator of transcription and 
raises the activity of a many genes 
drastically, thereby eventually leading to the 
development  of cancer. In the last decade, 
methods have become available, which 
enable to simultaneously analyse the activity 
of all genes, or the quantities of all proteins 
or of all cellular metabolites. For measuring 
the expression of all genes, DNA 
microarrays have been developed, which 
eventually results in genome-wide gene 
expression profiles. Changes in these gene 
expression profiles reflect modifications in 
the activities of all genes. For proteins and 
metabolites other methods have been 
developed, but these will not be discussed 
here. Since exposure of humans and 
animals to chemical substances leads to 
changed gene activities in the body, 
analysing these modulations may therefore 
have very interesting applications for 
toxicology. Toxicology namely investigates 
whether chemical substances have 
hazardous impact on humans or animals, 
and importantly also, to retrieve the 
mechanisms of action. Establishing these 
so-called genomic risk profiles has a central 
role in toxicogenomics immune cell, and 3) 
Influences by outside the body, like as a 
result of exposure to a toxic substance. For 
example of the latter is dioxin, a 
carcinogenic substance which binds to a 
sensor in the cell .  
 
Applications of Toxicogenomics 
There are two main applications for a 
toxicogenomic approach, comparative and 
functional. 
 
Comparative Toxicogenomics (Predictive 
Toxicogenomics) 
Comparative genomic, proteomic, or 
metabonomic studies measure the quantity 
and types of genes, proteins, and 
metabolites respectively that are present in 
normal and toxicant-exposed cells, tissues, 
or biofluids. This approach is useful in 
defining the composition of the assayed 
samples in terms of genetic, roteomic or 
metabolic variables. Thus a biological 
sample derived from toxicant, or sham 
treated animals can be regarded as an n-
dimensional vector in gene expression 

space with genes as variables along each 
dimension. The same analogy can be 
applied for protein expression or NMR 
analysis data thereby providing 
ndimensional fingerprints or profiles of the 
biological sample under investigation. Thus, 
this aspect of toxicogenomics deals with 
automated pattern recognition analysis 
aimed at studying trends in data sets rather 
than probing the individual genes for 
mechanistic information. The need for 
pattern recognition tools is mandated by the 
volume and complexity of data generated by 
genomic, proteomic and metabonomic tools, 
and human intervention, in required 
repetitive computation, is kept to a minimum. 
Automatic toxicity classification methods are 
very desirable and prediction models are 
well suited for this task. The data profiles 
reflect the pharmacological or toxicological 
effects, such as disease outcome, of the 
toxicant being utilized. The underlying goal 
is that a sample from an animal exposed to 
unknown chemical, or inducing a certain 
pathological effects, can then be compared 
to a database of profiles corresponding to 
exposure conditions with well-characterized 
chemicals, or to well defined pathological 
endpoints, to predict some properties 
regarding the studied sample. These 
predictions, as we view them, fall into two 
major categories, namely, classification of 
samples based on the class of compound to 
which animals were exposed, or 
classification of samples based on the 
histopathology and clinical chemistry that 
the treated animals displayed. Such data will 
allow insight into the gene, protein, or 
metabolite perturbations associated with 
pharmacologic effects of the toxic endpoints 
that ensue. If array data can be 
“phenotypically anchored” to conventional 
indices of toxicity, it will be possible to 
search for evidence of injury prior to its 
clinical or pathological manifestation. This 
approach could lead to the discovery of 
potential early biomarkers of toxic injury. 
“Supervised” predictive models have been 
used for many years in the financial sectors 
for evaluating future economic prospects of 
companies, and in geological institutes for 
predicting adverse weather outcomes using 
past or historical knowledge. They have also 
been utilized for predictions, using clinical 
and radiographic data, for the diagnosis of 
active pulmonary tuberculosis at the time of 
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presentation at a health-care facility that can 
be superior to physicians’ opinion. Predictive 
modeling will undoubtedly revolutionize the 
field of toxicology by recognizing patterns 
and trends in high-density data, and 
forecasting gene-, protein-, or metabolic 
interactions relying on historical data from 
well studied compounds and their 
corresponding profiles. During the 
development of a predictive model, a 
number of issues must be considered. 
These include the representativeness of the 
variables to the entity being modeled and 
the quality of databases consulted. The 
National Center for Toxicogenomics (NCT), 
at the National Institute of Environmental 
Health Sciences, is building a database to 
store many data and observations related 
with the process of compound evaluation 
studies. Recording these parameters will 
greatly enhance the process of parameter 
selection in subsequent efforts such as 
predictive modeling or mechanism of action 
interpretation. Predictive modeling can be 
fragmented into a multistage process. The 
primary stage predictive modeling includes 
hypothesis development, organization and 
data collection. Secondary stage modeling 
includes initial model development and 
testing. Tertiary stage modeling includes 
continued application of the model, ongoing 
refinement, and validation. Ideally, tertiary 
stage modeling is a perpetual process 
whereby lessons learned from previous 
model applications are incorporated into 
new and future applications maintaining or 
increasing the predictive robustness of the 
model.  
 
1) Data Collection 
The development of the primary stage of a 
predictive model involves activities such as 
data collection strategies based on 
proposed hypothesis. Data can be 
generated from in vivo or in vitro 
experiments, depending on the suitability of 
the biological system for studying effects of 
the targeted compound. In the case of in 
vivo studies, hypothesis must be generated 
regarding the compounds and endpoint 
effects so that other measures, such as 
pathology, serum markers, and 
carcinogenicity potential, are made and can 
contribute to the ensuing model 
development. Data on animal weight 
fluctuations, serum markers, pathological 

alterations, and mortality rates 
corresponding to a chemical exposure study 
should be documented and be the primary 
source of such information for the 
constructed predictive model. Pertinent data 
and analytically useful variables gathered 
from other sources can be evaluated and 
incorporated into the model. These data are 
important in developing a theoretical 
framework in which to interpret the results of 
the predictive model as well as to provide a 
guide for the data to be collected.  
 
 
2) Model Development  
The next step in the predictive model 
construction involves a deductive phase that 
incorporates collected data into the second 
stage of the model. The degree of 
correlation between gene-, protein- or 
metabolite-related profiles of different 
compounds or different 
toxicological/pathological outcomes and the 
accompanying variables can be measured 
and ranked. Computational and statistical 
approaches would be applied to the data set 
to glean relationships and dissimilarities 
among the variables studied. Neural 
networks, which have been used in models 
predicting health status of HIV/AIDS 
patients, can be trained with a set of 
available profiles from previously studied 
compounds or pathophysiological states. 
This allows the automation of all the actions 
aimed at searching the interrelationships 
and producing predictions regarding 
unknown or new profiles. Every effect is 
characterized by many parameters 
describing its gene expression pattern. 
Thus, a pattern may be represented by a 
vector in space whose components could 
represent various parameters that drive the 
decision of classification. Dimensionality of 
this space is the number of vector 
components or parameter involved and is 
based on the analysis of multiple 
parameters that can correlate similar 
expression profiles. A multitude of available 
algorithms satisfactorily cluster objects in 3-
or dimensional space based on 
computational approaches (ex. PCA). We 
can then construct similarity zones around 
various preset chemical or adverse endpoint 
nodes. Such similarity zones would allow the 
classification, with a defined level of 
confidence, of the identity of unknown 
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samples which neighbor samples in the 
training data set. Thus possessing the map 
and information about the analyzed 
compounds, we can reliably judge the 
compounds with which we are less familiar. 
The initial predictive model can be tested 
using the data collected in the primary 
stage. Based upon the outcome, variables 
such as toxicant induced lesion severity or 
organ weight fluctuations can be introduced 
or removed from the process, or the 
weighting of the variables can be adjusted 
until the model is able to predict the highest 
percentage of chemicals possible. This 
highlights the need for the consulted 
database to contain enough parameters 
such as histopathological observations or 
clinical chemistry data that accompany an 
experimental design to facilitate this 
dynamic model optimization process. 
Developed models should ideally allow the 
distinction of gene expression profiles 
associated with outcome of pathology 
depending on the querying preferences of 
the user and the question being asked. 
Once this has been achieved, tertiary stage 
modeling may begin.  
 
3) Utility  
The use of genomic resources such as DNA 
microarrays in safety evaluation will 
facilitates “in silico” testing. In silico 
experimentation can define this relationship 
through rigorous computation and mining of 
high-density gene expression data. 
Developments in computer modeling and 
expert systems for the prediction of 
biological activity and toxicity will 
revolutionize the process of drug discovery 
and development, by reducing the need to 
use animals for the pre-screening of almost 
limitless numbers of potential drug 
candidates. It is not foreseeable that in the 
near future predictive models will take the 
place of actual testing. However, in the 
context of toxicogenomics, and with the 
increasing number of chemicals to be 
tested, better prioritization can be used to 
select the compounds for animal testing. 
The most promising efficacious compounds 
with the least probability of an adverse 
outcome would be selected for further 
development. 
 
 
 

Functional Toxicogenomics 
Functional toxicogenomics is the study of 
genes’ and their products’ activities on an 
organism. Gene and protein expression 
profiles are analyzed for information that 
might provide insight into specific 
mechanistic pathways. Mechanistic 
inference is complex when the sequence of 
events following toxicant exposure is viewed 
in both dose and time space. Gene and 
protein expression patterns can indeed be 
highly dependent on the toxicant 
concentrations furnished at the assessed 
tissue and the time of exposure to the agent. 
Expression patterns are only a snapshot in 
time and dose space. Thus, a 
comprehensive understanding of potential 
mechanisms of action of a compound 
requires establishing patterns at various 
combinations of time and dose. This will 
minimize the misinterpretation of temporary 
responses and allow the discernment of 
delayed alterations that could be related to 
adaptation events or may be representative 
of potential biomarkers of pathophysiological 
endpoints. Studies that target temporal 
expression of specific genes and protein in 
response to toxicant exposure will lead to a 
better understanding of the sequence of 
events in complex regulatory networks. 
Algorithms, such as selforganizing maps can 
categorize genes or proteins based on their 
expression pattern across a continuous time 
points. These analyses might suggest 
relationships in the expression of some 
genes or proteins depending on the 
concerted modulation of these variables. An 
area of study which is of great interest to 
toxicologists is the mechanistic 
understanding of toxicant induced 
pathological endpoints. The premise that 
uneasiness in gene, protein, or metabolite 
levels are reflective of adverse phenotypic 
effects of toxicants offers an opportunity to 
phenotypically anchor these uneasiness. 
This is quite challenging due to the fact that 
phenotypic effects often vary in the time-
dose space of the studied agent and may 
have regional variations in the tissue. 
Furthermore, very few compounds exist that 
result in only one phenotypic alteration at a 
given coordinate in dose and time. Thus, 
objective assignment of measured variables 
to multiple phenotypic events is not possible 
under these circumstances. However study 
of multiple structurally and 
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pharmacologically unrelated agents that 
have similar pathological endpoints of 
interest, one could tease out gene, protein, 
or metabolite modulations that are in 
common between the studied compounds. 
Laser capture microdissection may also be 
used to capture regional variations such as 
zonal patterns of hepatotoxicity. This 
concept will allow the objective assignment 
of measurable variables to phenotypic 
observations that will supplement traditional 
pathology. 
The stand-alone, gene and protein 
expression, or metabolite fluctuation 
analyses are not expected to produce 
decisive inferences on the role of genes or 
proteins in certain pathways or regulatory 
networks. However, these tools constitute 
powerful means to generate viable and 
testable hypotheses that can direct future 
endeavors on proving or disproving the 
involvement of genes, proteins, and 
metabolites in cellular processes. Ultimately, 
hypothesized mechanistic inferences have 
to be validated by the use of traditional 
molecular biology techniques that include 
the use of specific enzyme inhibitors and the 
examination of the effects of over 
expression or deletion of specific genes or 
proteins on the studied toxic endpoint or 
mechanism of compound action. 
 
Future of Predictive Toxicology  
From the rapid screening perspective, it is 
neither cost effective, nor is it practical to 
survey the abundance of all genes, proteins, 
or metabolites in a sample of interest. It 
would be prudent to conduct cheaper, more 
highthroughput measurements on variables 
that are of most interest in the toxicological 
evaluation process. Thus, this reductionist 
strategy mandates the selection of subsets 
of genes, proteins or metabolites that will 
yield useful information in regards to 
classification purposes such as hazard 
identification or risk assessment. The 
challenge is finding out what these minimal 
variables are and what data we need to 
achieve this knowledge. Election of these 
subsets by surveying existing toxicology 
literature is inefficient because the role of 
most genes or proteins in toxicological 
responses is poorly defined. Moreover, there 
exists a multitude of undiscovered or 
unknown genes (ESTs) that might ultimately 
be key players in toxicological processes.  

The use of genes, proteins, or metabolites 
that are found to be most different between 
stressor induced-specific profiles, for 
efficient screening purposes 
Discriminative potential of genes, proteins, 
or metabolites is inferred when comparing 
differences in the levels of these parameters 
across toxicant exposure scenarios. In the 
case of samples derived from animals 
treated with one of few chemicals; the levels 
of one gene, protein, or metabolite might be 
sufficient to distinguish samples based on 
the few classes of compounds used for the 
exposures. However, multiple parameters 
are needed to separate samples derived 
from exposures to a larger variety of 
chemical classes. Finding these 
discriminatory parameters requires the use 
of computational and mining algorithms that 
extract this knowledge from a database of 
chemical effects. 
Commonality across animals revealed by 
cluster analysis of gene, protein, or 
metabolite levels would indicate a potential 
association between the altered parameters 
and the shared histopathological endpoint. 
Linear discriminant analysis (LDA) and 
single gene ANOVA can be used to test 
single parameters (ex. genes) for their ability 
to separate profiles corresponding to 
samples derived from different exposure 
conditions (ex. chemical identity, biological 
endpoint). Higher order analyses such as 
genetic algorithm/K-nearest neighbor 
(GA/KNN) are able to find a user defined 
number of parameters that would, as a set, 
highlight the most difference between 
biological samples based on the levels of 
genes, proteins, or metabolites. Once the 
profile of a parameter, or a set of 
parameters, is found to distinguish between 
samples in a data set, it can be used to 
interrogate the identity of unknown samples 
for screening purposes in a highthroughput 
fashion.  
 
Conclusion 
Toxicogenomic tools will inevitably improve 
the way data is extracted from classical 
toxicology studies. Ultimately, through the 
use of computational tools encompassed 
within the comparative branch of 
toxicogenomics, environmental hazards may 
be identified in a high-throughput and 
efficient fashion. These achievements will be 
facilitated through the development of gene, 



Functional Toxicogenomics: Technological Aspects 

Journal of Toxicology Research, Vol. 1, Issue 1, 2010 8 

protein, or metabolite markers whose levels 
can be monitored in samples derived from 
exposed populations. Compound analysis 
will also improve our understanding of 
toxicant induced adverse effects in biological 
systems by providing information about the 
basis of molecular pathways that are 
involved in response to expose compound. 
This knowledge will lead to a more informed 
and precise classification of compounds for 
their safety evaluation. 
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