
FAST DATA RETRIEVAL USING MAP REDUCE: A CASE STUDY

 Ravin Ahuja1, Anindya Lahiri2, Nitesh Jain3, Aditya Gabrani4

1Corresponding Author PhD scholar with the Department of Computer Engineering, Delhi College
of Engineering, Bawana Road, New Delhi-110042, India. ravin_ahuja@yahoo.co.in, +91
9810549168
2UnderGraduateStudent, Ambedkar Institute of Technology, Delhi-110031, India.
3UnderGraduateStudent, Ambedkar Institute of Technology Delhi-110031, India.
4UnderGraduateStudent, Delhi College of Engineering, Bawana Road, New Delhi-110042, India.

Abstract

With the exponential growth in the volume of data,
the need for its fast retrieval has increasingly
become imminent. This requires heavy amount of
searching that leads to computational complexities.
The parallelized scatter and gather processing
techniques over a distributed backbone has emerged
as an effective solution for this. The scatter
technique employs parallelizing the processes that
concurrently operate on data in order to provide an
efficient search. On the other hand, the gather
technique collects data in parallel that leads to fast
retrieval of data. In this paper, authors explore the
use of MapReduce framework based on scatter and
gather processing technique by exploiting it in the
document searching techniques. This is based on
assimilating occurrence count of a keyword and
number of times it is referred to in the system. The
authors suggest how MapReduce can be used in
conjunction with the existing traditional methods
and how effectively it improves the fast retrieval of
data. The authors also discuss the advantages of the
MapReduce in prioritizing various operations
involving assorting and consorting of geographically
distributed data.

1. Introduction

In the recent times we have witnessed heavy growth
in size of data. Mining, storage and retrieval of such
voluminous data have become a challenging task.
Web is also emerging as a source of huge pool of
information. Retrieval of accurate information from
this pool requires heavy processing and efficient
retrieval algorithms, which have to be scalable as
well. The traditional techniques applicable to the
single system fail to exhibit efficient and time bound
retrieval over large scattered data in a distributed
environment.

Distributed platforms have enabled faster processing
and higher availability of information with the
benefit of scalability in applications. Hence the focus
is now on developing the best suitable techniques to
work on distributed data. Breaking a given task into
smaller sets and executing it, using a parallel
algorithm helps efficient data management with
ready availability and fast analysis. This process can
be exploited by using the existing distributed
programming standard like MapReduce [1].

With MapReduce, working on larger scattered
datasets is easier as compared to traditional database
programming languages such as SQL. MapReduce
scores well as it does not ask a programmer to define
database schema to manage, retrieve and operate on
datasets [2]. Yet it remains efficient and utmost fault
tolerant ensuring unaffected continual computing.
The programming model provides an abstraction and
transparency of the complexity involved in
implementation of networks, distribution of
processes and their execution over distributed
environment in a convenient manner to the end user.
Apache Hadoop project [3] is a prominent open
source counterpart of MapReduce. Hadoop provides
all basic minimal requirements for MapReduce
framework. It uses Hadoop distributed file system
inspired by Google file system. Hadoop is used by
various universities and organizations for teaching
and commercial benefits. Yahoo, Facebook, Amazon
and IBM are few organizations to name that have
large-scale Hadoop implementations.

The paper presents a case study for application of
MapReduce in data retrieval techniques over
geographically distributed data. Authors further
analyze the role and advantages of MapReduce in
prioritizing various steps of data aggregation over
traditional existing methods with simplified and
enhanced data retrieval. Rest of the paper follows.
Section 2 deals with description of various search
and data retrieval techniques. The MapReduce

 1

Journal of High Performance Computing, Vol. 1, Issue 1, 2010, pp-01-05

Copyright © 2010, Bioinfo Publications,
Journal of High Performance Computing, Vol. 1, Issue 1, 2010

COM
Stamp

parallel programming framework has been explained
in Section 3. Section 4 illustrates the details of
Weighted Index data retrieval using MapReduce.
We finally conclude the paper in Section 5.

2. Various Search and Data Retrieval Techniques

Improvisation of information retrieval model started
with Boolean search technique. The technique
provided users higher control over query using
Boolean operators to define terms to be included and
excluded in search. Since this technique did not have
a document ranking mechanism, it showed poor
precision results to search queries. More refined
models assigned a numeric score or rank to
documents on the basis of relevance to a particular
search keyword. These models include vector space
model, probabilistic model and inference network
model [4]. Vector space model considers text as
vectors. This vector assumes a non-zero value in
case it belongs to the document. Model checks for
similarity between query vector and document
vector by finding cosine of angle between two
vectors [5]. Probabilistic model is based on
probabilistic ranking principle that ranks document
on the basis of decreasing probability of relevance
for a search query key. Various algorithms are
proposed for estimating this probability.

The use of web oriented, distributed computing
platforms have become popular, and information
retrieval confronts a major challenge. Under
conventional techniques used for search and
retrieval, documents were grouped together by
categories as suggested by different algorithms. But
due to huge data and poor performance of retrieval
algorithms, the document clustering technique was
slow and proved to be inefficient for precision
searching [6]. Advance techniques based on the link
structure of web have been developed to bring
efficiency in prioritizing relevant data with increase
in the size of information pool. Pagerank and
Hyperlink Induced Text Search are algorithms using
this concept.

Hyperlink Induced Text Search is an iterative link
based algorithm that rates web document by its hub
and authority value. Hub value is calculated using
number of in links to a webpage and authority the
value finds relevance of content in document.
Google’s PageRank is another algorithm based on
the link structure of web-data. It assumes that more
informative document on web would be highly
linked and referred. Each page has same vote at the
start and gives fraction of its votes to all out linked

pages and receives votes of in linked pages. This
process is iterated till total of vote is received by a
page attaining a constant value. At the end, votes of
page with high PageRank have higher weight.

A weighted index [7] document searching technique
is influenced by the term frequency mechanism and
the referenced nature of academic documents similar
to the link nature of web-documents. When a search
query is made for a keyword, a weight rank is
calculated not only on the basis of frequency of
occurrence of that keyword in the document but also
on the basis of number of references made to the
document by other documents.

Processes were earlier executed sequentially. With
parallel programming, concurrent execution of
process over different blocks of data came into
picture. Google developed MapReduce framework
for data intensive task on distributed systems.
MapReduce is framework which allows inexpensive
utilization of large distributed networks using non-
local resources to compute parallel processes. The
highly scalable, economical and simple
programming model has encouraged various
applications of MapReduce.

3. MapReduce Parallel Programming
Framework

MapReduce is a programming model developed
initially by Google to process large distributed data
efficiently without compromising the scalability of
applications that work over such data. Functional
programming model of MapReduce allows data
portability to distributed framework. Among various
application of the framework, use in fields such as
searching, sorting, indexing, machine learning,
artificial intelligence and graph based computations
is more prominent.

3.1 Scatter and Gather Technique

A processing logic that acts on data can be
simplified as a transformation on a group of data.
The MapReduce model works by scattering [8] the
transformation by splitting the process into sub-tasks
to act concurrently on chunks of data. The
fragmentation of data is done by formatting it into a
distributed file system [9]. Each set of data is applied
a ‘mapping’ function to perform transformations
through parallel processing. Later the results of
independent transformations can be gathered [8]
using a ‘reduce’ function to produce output.

 2

Fast data retrieval using MAP reduce: a case study

Journal of High Performance Computing, Vol. 1, Issue 1, 2010

3.2 Execution model

MapReduce execution starts with splitting data and
storing it in a distributed file system. Input reader
reads data from distributed file system and produces
initial key value pairs [10]. Map is a user-defined
function, which processes these pairs and produce
intermediate pairs. In MapReduce execution there
are independent map and reduce tasks that may be
running simultaneously on different nodes.

Master node keeps track of these tasks and monitors
other worker nodes. Worker nodes inform master
about location of output by map phase. Reduce
worker execute reduce function on intermediate
value from each map to produce zero or user defined
output corresponding to each key. Reduce worker
iterate through intermediate key value pairs by
remote procedure calls and merge values of same
key. On completion of all map and reduce functions,
master is informed which returns the result to user
program.

Figure 1: MapReduce model working over a cluster

environment

3.3 Merits and Demerits of MapReduce

The strength of MapReduce lies in its ability to hide
complexities of implementation and scalability from
programmer. Programmers do not need knowledge
of parallel programming; they only have to make use
of MapReduce libraries. The MapReduce framework
does not require redesigning of algorithms for
application over large distributed systems; single
system code can be used for parallel execution.

MapReduce built upon Google file system helps to
provide a system for parallel processing of large
scale data distributed over clusters. Cluster systems
usually have centralized storage servers accessible
by all other nodes in the cluster but the Google file
system master server acts differently. Google file
system operates in a manner where each cluster acts
as chunk servers for storage and computation
powerhouse, hence it eliminates the need for data
transfer between a central data storage thus
removing bottlenecks for execution of application.
The worker node directly handles data broken into
chunks for easy execution. The processing over
different nodes is independent of each other hence it
leads to high aggregate throughput by concurrent
multiple mappings and reduces. The distributed file
system relieves the master server of data transfers to
only distribution of task among chunk servers thus
networks issues do not become bottleneck. Fault
tolerance is achieved by replicating data to increase
data availability and through fast and automatic
recovery of failed processes [9].

Initial model of MapReduce was inefficient in
processing relational data operating on
heterogeneous data sets. The problem was analyzed
and solved by proposing extended merge phase in
existing model in [11]. The problem of replication of
data over large heterogeneous environment such as
grid still remains an issue in the programming
model.

Scattering of processes and gathering of their results
may often overrun the computational cost of these
processes. Transferring intermediate results for
parallel processing may lead to performance
degradation. Heavy parallel computation involving
multiple map and reduce phases require
synchronization, fault tolerance, scheduling and re-
scheduling of failed tasks. Synchronization is a
bottleneck as data is often modified during execution
thus data validation and maintaining concurrency are
important challenges.

4. Weighted Index data retrieval using
MapReduce

For each queried keyword, documents are searched
and results, sorted on the basis of relevance are
returned. The relevance of document is judged by
their weight index. The weight index of document is
affected by both word frequency and number of
referrals made to that document. With the large
amount of geographically distributed data available,
scanning each document by this technique and

 3

Fast data retrieval using MAP reduce: a case study

Journal of High Performance Computing, Vol. 1, Issue 1, 2010

calculating its weight one at a time becomes
cumbersome and requires heavy processing, thus
consumes time. Solution to heavy computing
involved is parallelization of task. MapReduce
provides parallel execution of sorting and collecting
phase processing.

The weighted index data retrieval technique can be
expressed as two processes. The first process
involves calculation of weight index based on
number of occurrences of keyword and the
document referrals and the second processes is
sorting of document list generated as output from the
previous process in descending order of weight for
providing most relevant query results to the user.
The two processes can be implemented in parallel
over large data by further breaking each process into
sub tasks to be processed by multiple processors.
The map and the reduce functions allow configuring
the sub tasks to act on each document concurrently.

Figure 2: MapReduce model for weighted index

search

As the algorithm involves not only counting the
occurrences of a search keyword in particular
document but also scanning all other documents for
calculating its weight due to references, searching
relevant documents would require faster processing
to return query result in specific time bound.
Calculating weight of each data set and finally

merging into a single ranked structure becomes
difficult when the data is distributed and also
consumes time. The difficulty can be easily resolved
by the operation style of MapReduce.

5. Conclusion

MapReduce provides the benefit of scattering
computing processes into sub-tasks to be executed as
separate processes concurrently over data. The
authors discuss a weighted index document-
searching algorithm and highlight how MapReduce
is used over scattered data. The operations involved
in scanning of data, merging intermediate output and
finally sorting the retrieved documents, prioritized
and indexed according to their respective weights
invite a lot of complexities. With accomplished
study of MapReduce framework we now target
implementation of the weighted index data retrieval
algorithm using Hadoop in a distributed
environment.

6. Acknowledgement

The authors would also like to express their gratitude
to Prof. Asok De, Principal AIT and Professor Delhi
College of Engineering and Dr. G. Gabrani, Director
TSL and former HOD, computer engineering
department, Delhi College of Engineering for their
constant support and encouragement of our effort
that have made possible for us to complete the work
described in this paper.

7. References

[1]. Jeffery Dean and Sanjay Ghemawat,

“Mapreduce: Simplified data processing on
large clusters,” in Proceedings of OSDI’04:
Sixth Symposium on Operating System
Design and Implementation, December 2004.

[2]. Joe Hellerstein, "Programming a Parallel
Future", white paper, UC Berkeley Computer
Science.

[3]. Hadoop. http://lucene.apache.org/hadoop/
[4]. A. Singhal, "Modern information retrieval: a

brief overview", IEEE Data Engineering
Bulletin, Special Issue on Text and Databases,
24(4), Dec. 2001.

[5]. Gerard Salton, A.Wong, and C. S. Yang. A
vector space model for information retrieval.
Communications of the ACM, 18(11): 613–
620, November 1975.

 4

Fast data retrieval using MAP reduce: a case study

Journal of High Performance Computing, Vol. 1, Issue 1, 2010

[6]. C. J. Van Rijsbergen and W. B. Croft.
Document Clustering: An evaluation of some
experiments with the Cranfield 1400
collection. Information Processing &
Management, 11:171-182, 1975.

[7]. Hye-Jin Jeong and Yon-Sung Kim, “Index
weight decision technique for searching
reliable documents”, Second International
Conference on Future Generation
Communication and Networking, 2008.

[8]. http://www.openspaces.org/display/DSG
[9]. S. Ghemawat, H. Gobioff, and S. T. Leung,

“The Google file system,” in Proceedings of
19th ACM Symposium on Operating Systems
Principles, October 2003.

[10]. Ralf Lämmel, “Google’s MapReduce
Programming Model Revisited.
http://www.cs.vu.nl/~ralf/MapReduce/paper.p
df

[11]. H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S.
Parker, Jr. Map-Reduce-Merge: Simplified
relational data processing on large clusters. In
SIGMOD, pages 1029–1040, 2007.

 5

Fast data retrieval using MAP reduce: a case study

Journal of High Performance Computing, Vol. 1, Issue 1, 2010

COM
Inserted Text
(

COM
Cross-Out

