
1
Copyright © 2011, Bioinfo Publications

JCSM
Journal of Computational Simulation and Modeling
Volume 1, Issue 1, 2011, pp-01-09
Available online at http://www.bioinfo.in/contents.php?id=47

SOFTWARE TESTING

DINESH CHOUDHARY1 AND VIJAY KUMAR2

1Department of Computer Science & Engineering, Kautilya Institute of Technology & Engineering and School of
Management, Jaipur, India, dinesh_matwa@yahoo.co.in
2Department of Computer Science & Engineering, Stani Memorial College of Engineering & Technology, Jaipur,
India, vijay_matwa@yahoo.com

Abstract- Software Testing is an empirical investigation conducted to provide stakeholders with information about
the quality of the product or service under test, with respect to the context in which it is intended to operate. This
includes, but is not limited to, the process of executing a program or application with the intent of finding software
bugs.
Testing can never completely establish the correctness of computer software. Instead, it furnishes a criticism or
comparison that compares the state and behavior of the product against oracles—principles or mechanisms by
which someone might recognize a problem. These oracles may include (but are not limited to) specifications,
comparable products, past versions of the same product, inferences about intended or expected purpose, user or
customer expectations, relevant standards, applicable laws, or other criteria.
Over its existence, computer software has continued to grow in complexity and size. Every software product has a
target audience. For example, the audience for video game software is completely different from banking software.
Therefore, when an organization develops or otherwise invests in a software product, it presumably must assess
whether the software product will be acceptable to its end users, its target audience, its purchasers, and other
stakeholders. Software testing is the process of attempting to make this assessment. A study conducted by NIST
in 2002 reports that software bugs cost the U.S. economy $59.5 billion annually. More than a third of this cost
could be avoided if better software testing was performed. A primary purpose for testing is to detect software
failures so that defects may be uncovered and corrected. This is a non-trivial pursuit. Testing cannot establish that
a product functions properly under all conditions but can only establish that it does not function properly under
specific conditions.
The scope of software testing often includes examination of code as well as execution of that code in various
environments and conditions as well as examining the aspects of code: does it do what it is supposed to do and
do what it needs to do. In the current culture of software development, a testing organization may be separate
from the development team. There are various roles for testing team members. Information derived from software
testing may be used to correct the process by which software is developed.

Introduction
When a program is implemented to provide a
concrete representation of an algorithm, the
developers of this program are naturally concerned
with the correctness and performance of the
implementation. Software engineers must ensure
that their software systems achieve an appropriate
level of quality. Software verification is the process
of ensuring that a program meets its intended
specification [Kaner et al., 1993].
One technique that can assist during the
specification, design, and implementation of a
software system is software verification through
correctness proof. Software testing, or the process
of assessing the functionality and correctness of a
program through execution or analysis, is another
alternative for verifying a software system. As noted
by Bowen, Hinchley, and Geller, software testing
can be appropriately used in conjunction with
correctness proofs and other types of formal

approaches in order to develop high quality
software systems [Bowen and Hinchley, 1995,
Geller, 1978]. Yet, it is also possible to use software
testing techniques in isolation from program
correctness proofs or other formal methods.
Software testing is not a “silver bullet” that can
guarantee the production of high quality software
systems. While a “correct” correctness proof
demonstrates that a software system (which exactly
meets its specification) will always operate in a
given manner, software testing that is not fully
exhaustive can only suggest the presence of flaws
and cannot prove their absence. Moreover, Kaner
et al. have noted that it is impossible to completely
test an application because [Kaner et al., 1993]: (1)
the domain of program inputs is too large, (2) there
are too many possible input paths, and (3) design
and specification issues are difficult to test. The first
and second points present obvious complications

Bioinfo Publications
Stamp
http://www.bioinfo.in/contents.php?id=47

Software Testing

2
Journal of Computational Simulation and Modeling

Volume 1, Issue 1, 2011

and the final point highlights the difficulty of
determining if the specification of a problem solution
and the design of its implementation are also
correct.
Using a thought experiment developed by Beizer,
we can explore the first assertion by assuming that
we have a method that takes a String of ten
characters as input and performs some arbitrary
operation on the String. In order to test this function
exhaustively, we would have to input 280 Strings
and determine if they produce the appropriate
output.1 the testing of our hypothetical method
might also involved the usage of anomalous input,
like Strings consisting of more or less than ten
characters, to determine the robustness of the
operation. In this situation, the total number of
inputs would be significantly greater than 280.
Therefore, we can conclude that exhaustive testing
is an intractable problem since it is impossible to
solve with a polynomial-time algorithm [Binder,
1999, Neapolitan and Naimipour, 1998]. The
difficulties alluded to by the second assertion are
exacerbated by the fact that certain execution paths
in a program could be infeasible. Finally, software
testing is an algorithmically unsolvable problem
since there may be input values for which the
program does not halt [Beizer, 1990, Binder, 1999].
Thus far, we have provided an intuitive
understanding of the limitations of software testing.
However, Morell has proposed a theoretical model
of the testing process that facilitates the proof of
pessimistic theorems that clearly state the
limitations of testing [Morell, 1990]. Furthermore,
Hamlet and Morell have formally stated the goals of
a software testing methodology and implicitly
provided an understanding of the limitations of
testing [Hamlet, 1994, Morell, 1990]. Young and
Taylor have also observed that every software
testing technique must involve some tradeoff
between accuracy and computational cost because
the presence (or lack thereof) of defects within a
program is an undecidable property [Young and
Taylor, 1989]. The theoretical limitations of testing
clearly indicate that it is impossible to propose and
implement a software testing methodology that is
completely accurate and applicable to arbitrary
programs [Young and Taylor, 1989]. While software
testing is certainly faced with inherent limitations,
there are also a number of practical considerations
that can hinder the application of a testing
technique. For example, some programming
languages might not readily support a selected
testing approach, a test automation framework
might not easily facilitate the automatic execution of
certain types of test suites, or there could be a lack
of tool support to test with respect to a specific test
adequacy criterion. Even though any testing effort
will be faced with significant essential and
accidental limitations, the rigorous, consistent, and
intelligent application of appropriate software testing

techniques can improve the quality of the
application under development.
Software testing and analysis is an active research
area. The ACM/IEEE International Conference on
Software Engineering, the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, the ACMSIGSOFT International
Symposium on Software Testing and Analysis, and
the ACM SIGAPP Symposium on Applied
Computing’s Software Engineering Track are all
important forums for new research in the areas of
software engineering and software testing and
analysis. Other important conferences include: IEEE
Automated Software Engineering, IEEE
International Conference on Software Maintenance,
IEEE International Symposium on Software
Reliability Engineering, the IEEE/NASA Software
Engineering Workshop, and the IEEE Computer
Software and Applications Conference.
There are also several magazines and journals that
provide archives for important software engineering
and software testing research. The IEEE
Transactions on Software Engineering and the ACM
Transactions on Software Engineering and
Methodology are two noteworthy journals that often
publish software testing papers. Other journals
include: Software Testing, Verification, and
Reliability, Software: Practice and Experience,
Software Quality Journal, Automated Software
Engineering: An International Journal, and Empirical
Software Engineering: An International Journal.
Magazines that publish software testing articles
include Communications of the ACM, IEEE
Software, IEEE Computer, and Better Software
(formerly known as Software Testing and Quality
Engineering). ACM SIGSOFT also sponsors the bi-
monthly newsletter called Software Engineering
Notes.
Software testing is any activity aimed at evaluating
an attribute or capability of a program or system and
determining that it meets its required results.
[Hetzel88] Although crucial to software quality and
widely deployed by programmers and testers,
software testing still remains an art, due to limited
understanding of the principles of software. The
difficulty in software testing stems from the
complexity of software: we can not completely test a
program with moderate complexity. Testing is more
than just debugging. The purpose of testing can be
quality assurance, verification and validation, or
reliability estimation. Testing can be used as a
generic metric as well. Correctness testing and
reliability testing are two major areas of testing.
Software testing is a trade-off between budget, time
and quality.
Software Testing is the process of executing a
program or system with the intent of finding errors.
[Myers79] Or, it involves any activity aimed at
evaluating an attribute or capability of a program or
system and determining that it meets its required

Dinesh Choudhary and Vijay Kumar

3
Copyright © 2011, Bioinfo Publications

results. [Hetzel88] Software is not unlike other
physical processes where inputs are received and
outputs are produced. Where software differs is in
the manner in which it fails. Most physical systems
fail in a fixed (and reasonably small) set of ways. By
contrast, software can fail in many bizarre ways.
Detecting all of the different failure modes for
software is generally infeasible. [Rstcorp]
Unlike most physical systems, most of the defects in
software are design errors, not manufacturing
defects. Software does not suffer from corrosion,
wear-and-tear -- generally it will not change until
upgrades, or until obsolescence. So once the
software is shipped, the design defects -- or bugs --
will be buried in and remain latent until activation.
Software bugs will almost always exist in any
software module with moderate size: not because
programmers are careless or irresponsible, but
because the complexity of software is generally
intractable -- and humans have only limited ability to
manage complexity. It is also true that for any
complex systems, design defects can never be
completely ruled out.
Discovering the design defects in software, is
equally difficult, for the same reason of complexity.
Because software and any digital systems are not
continuous, testing boundary values are not
sufficient to guarantee correctness. All the possible
values need to be tested and verified, but complete
testing is infeasible. Exhaustively testing a simple
program to add only two integer inputs of 32-bits
(yielding 2^64 distinct test cases) would take
hundreds of years, even if tests were performed at a
rate of thousands per second. Obviously, for a
realistic software module, the complexity can be far
beyond the example mentioned here. If inputs from
the real world are involved, the problem will get
worse, because timing and unpredictable
environmental effects and human interactions are
all possible input parameters under consideration.
A further complication has to do with the dynamic
nature of programs. If a failure occurs during
preliminary testing and the code is changed, the
software may now work for a test case that it didn't
work for previously. But its behavior on pre-error
test cases that it passed before can no longer be
guaranteed. To account for this possibility, testing
should be restarted. The expense of doing this is
often prohibitive. [Rstcorp]
An interesting analogy parallels the difficulty in
software testing with the pesticide, known as the
Pesticide Paradox [Beizer90]: Every method you
use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are
ineffectual. But this alone will not guarantee to
make the software better, because the Complexity
Barrier [Beizer90] principle states: Software
complexity (and therefore that of bugs) grows to the
limits of our ability to manage that complexity. By
eliminating the (previous) easy bugs you allowed

another escalation of features and complexity, but
his time you have subtler bugs to face, just to retain
the reliability you had before. Society seems to be
unwilling to limit complexity because we all want
that extra bell, whistle, and feature interaction.
Thus, our users always push us to the complexity
barrier and how close we can approach that barrier
is largely determined by the strength of the
techniques we can wield against ever more complex
and subtle bugs. [Beizer90]
Regardless of the limitations, testing is an integral
part in software development. It is broadly deployed
in every phase in the software development cycle.
Typically, more than 50% percent of the
development time is spent in testing. Testing is
usually performed for the following purposes:

To improve quality.
As computers and software are used in critical
applications, the outcome of a bug can be severe.
Bugs can cause huge losses. Bugs in critical
systems have caused airplane crashes, allowed
space shuttle missions to go awry, halted trading on
the stock market, and worse. Bugs can kill. Bugs
can cause disasters. The so-called year 2000 (Y2K)
bug has given birth to a cottage industry of
consultants and programming tools dedicated to
making sure the modern world doesn't come to a
screeching halt on the first day of the next century.
[Bugs] In a computerized embedded world, the
quality and reliability of software is a matter of life
and death.
Quality means the conformance to the specified
design requirement. Being correct, the minimum
requirement of quality, means performing as
required under specified circumstances. Debugging,
a narrow view of software testing, is performed
heavily to find out design defects by the
programmer. The imperfection of human nature
makes it almost impossible to make a moderately
complex program correct the first time. Finding the
problems and get them fixed [Kaner93], is the
purpose of debugging in programming phase.

For Verification & Validation (V&V)
Just as topic Verification and Validation indicated,
another important purpose of testing is verification
and validation (V&V). Testing can serve as metrics.
It is heavily used as a tool in the V&V process.
Testers can make claims based on interpretations
of the testing results, which either the product works
under certain situations, or it does not work. We can
also compare the quality among different products
under the same specification, based on results from
the same test.
We can not test quality directly, but we can test
related factors to make quality visible. Quality has
three sets of factors -- functionality, engineering,
and adaptability. These three sets of factors can be
thought of as dimensions in the software quality

Software Testing

4
Journal of Computational Simulation and Modeling

Volume 1, Issue 1, 2011

space. Each dimension may be broken down into its
component factors and considerations at
successively lower levels of detail. Table 1
illustrates some of the most frequently cited quality
considerations.
 Table 1- Typical Software Quality Factors [Hetzel88]

Functionality
(exterior
quality)

Engineering
(interior
quality)

Adaptability
(future
quality)

Correctness Efficiency Flexibility

Reliability Testability Reusability

Usability Documentation Maintainability

Integrity Structure

Good testing provides measures for all relevant
factors. The importance of any particular factor
varies from application to application. Any system
where human lives are at stake must place extreme
emphasis on reliability and integrity. In the typical
business system usability and maintainability are
the key factors, while for a one-time scientific
program neither may be significant. Our testing, to
be fully effective, must be geared to measuring
each relevant factor and thus forcing quality to
become tangible and visible. [Hetzel88]
Tests with the purpose of validating the product
works are named clean tests, or positive tests. The
drawbacks are that it can only validate that the
software works for the specified test cases. A finite
number of tests can not validate that the software
works for all situations. On the contrary, only one
failed test is sufficient enough to show that the
software does not work. Dirty tests, or negative
tests, refers to the tests aiming at breaking the
software, or showing that it does not work. A piece
of software must have sufficient exception handling
capabilities to survive a significant level of dirty
tests.
A testable design is a design that can be easily
validated, falsified and maintained. Because testing
is a rigorous effort and requires significant time and
cost, design for testability is also an important
design rule for software development.

For reliability estimation [Kaner93] [Lyu95]
Software reliability has important relations with
many aspects of software, including the structure,
and the amount of testing it has been subjected to.
Based on an operational profile (an estimate of the
relative frequency of use of various inputs to the
program [Lyu95]), testing can serve as a statistical
sampling method to gain failure data for reliability
estimation.
Software testing is not mature. It still remains an art,
because we still cannot make it a science. We are
still using the same testing techniques invented 20-
30 years ago, some of which are crafted methods or
heuristics rather than good engineering methods.
Software testing can be costly, but not testing

software is even more expensive, especially in
places that human lives are at stake. Solving the
software-testing problem is no easier than solving
the Turing halting problem. We can never be sure
that a piece of software is correct. We can never be
sure that the specifications are correct. No
verification system can verify every correct program.
We can never be certain that a verification system is
correct either.

Key Concepts
Taxonomy
There is a plethora of testing methods and testing
techniques, serving multiple purposes in different
life cycle phases. Classified by purpose, software
testing can be divided into: correctness testing,
performance testing, reliability testing and security
testing. Classified by life-cycle phase, software
testing can be classified into the following
categories: requirements phase testing, design
phase testing, program phase testing, evaluating
test results, installation phase testing, acceptance
testing and maintenance testing. By scope,
software testing can be categorized as follows: unit
testing, component testing, integration testing, and
system testing.
Correctness testing
Correctness is the minimum requirement of
software, the essential purpose of testing.
Correctness testing will need some type of oracle,
to tell the right behavior from the wrong one. The
tester may or may not know the inside details of the
software module under test, e.g. control flow, data
flow, etc. Therefore, either a white-box point of view
or black-box point of view can be taken in testing
software. We must note that the black-box and
white-box ideas are not limited in correctness
testing only.

Black-box testing
The black-box approach is a testing method in
which test data are derived from the specified
functional requirements without regard to the final
program structure. [Perry90] It is also termed data-
driven, input/output driven [Myers79], or
requirements-based [Hetzel88] testing. Because
only the functionality of the software module is of
concern, black-box testing also mainly refers to
functional testing -- a testing method emphasized
on executing the functions and examination of their
input and output data. [Howden87] The tester treats
the software under test as a black box -- only the
inputs, outputs and specification are visible, and the
functionality is determined by observing the outputs
to corresponding inputs. In testing, various inputs
are exercised and the outputs are compared
against specification to validate the correctness. All
test cases are derived from the specification. No
implementation details of the code are considered.

Dinesh Choudhary and Vijay Kumar

5
Copyright © 2011, Bioinfo Publications

It is obvious that the more we have covered in the
input space, the more problems we will find and
therefore we will be more confident about the quality
of the software. Ideally we would be tempted to
exhaustively test the input space. But as stated
above, exhaustively testing the combinations of
valid inputs will be impossible for most of the
programs, let alone considering invalid inputs,
timing, sequence, and resource variables.
Combinatorial explosion is the major roadblock in
functional testing. To make things worse, we can
never be sure whether the specification is either
correct or complete. Due to limitations of the
language used in the specifications (usually natural
language), ambiguity is often inevitable. Even if we
use some type of formal or restricted language, we
may still fail to write down all the possible cases in
the specification. Sometimes, the specification itself
becomes an intractable problem: it is not possible to
specify precisely every situation that can be
encountered using limited words. And people can
seldom specify clearly what they want -- they
usually can tell whether a prototype is, or is not,
what they want after they have been finished.
Specification problems contributes approximately 30
percent of all bugs in software. [Beizer95]
The research in black-box testing mainly focuses on
how to maximize the effectiveness of testing with
minimum cost, usually the number of test cases. It
is not possible to exhaust the input space, but it is
possible to exhaustively test a subset of the input
space. Partitioning is one of the common
techniques. If we have partitioned the input space
and assume all the input values in a partition is
equivalent, then we only need to test one
representative value in each partition to sufficiently
cover the whole input space. Domain testing
[Beizer95] partitions the input domain into regions,
and consider the input values in each domain an
equivalent class. Domains can be exhaustively
tested and covered by selecting a representative
value(s) in each domain. Boundary values are of
special interest. Experience shows that test cases
that explore boundary conditions have a higher
payoff than test cases that do not. Boundary value
analysis [Myers79] requires one or more boundary
values selected as representative test cases. The
difficulties with domain testing are that incorrect
domain definitions in the specification can not be
efficiently discovered.
Good partitioning requires knowledge of the
software structure. A good testing plan will not only
contain black-box testing, but also white-box
approaches, and combinations of the two.

White-box testing
Contrary to black-box testing, software is viewed as
a white-box, or glass-box in white-box testing, as
the structure and flow of the software under test are
visible to the tester. Testing plans are made

according to the details of the software
implementation, such as programming language,
logic, and styles. Test cases are derived from the
program structure. White-box testing is also called
glass-box testing, logic-driven testing [Myers79] or
design-based testing [Hetzel88].
There are many techniques available in white-box
testing, because the problem of intractability is
eased by specific knowledge and attention on the
structure of the software under test. The intention of
exhausting some aspect of the software is still
strong in white-box testing, and some degree of
exhaustion can be achieved, such as executing
each line of code at least once (statement
coverage), traverse every branch statements
(branch coverage), or cover all the possible
combinations of true and false condition predicates
(Multiple condition coverage). [Parrington89]
Control-flow testing, loop testing, and data-flow
testing, all maps the corresponding flow structure of
the software into a directed graph. Test cases are
carefully selected based on the criterion that all the
nodes or paths are covered or traversed at least
once. By doing so we may discover unnecessary
"dead" code -- code that is of no use, or never get
executed at all, which can not be discovered by
functional testing.
In mutation testing, the original program code is
perturbed and many mutated programs are created,
each contains one fault. Each faulty version of the
program is called a mutant. Test data are selected
based on the effectiveness of failing the mutants.
The more mutants a test case can kill, the better the
test case is considered. The problem with mutation
testing is that it is too computationally expensive to
use. The boundary between black-box approach
and white-box approach is not clear-cut. Many
testing strategies mentioned above, may not be
safely classified into black-box testing or white-box
testing. It is also true for transaction-flow testing,
syntax testing, finite-state testing, and many other
testing strategies not discussed in this text. One
reason is that all the above techniques will need
some knowledge of the specification of the software
under test. Another reason is that the idea of
specification itself is broad -- it may contain any
requirement including the structure, programming
language, and programming style as part of the
specification content.
We may be reluctant to consider random testing as
a testing technique. The test case selection is
simple and straightforward: they are randomly
chosen. Study in [Duran84] indicates that random
testing is more cost effective for many programs.
Some very subtle errors can be discovered with low
cost. And it is also not inferior in coverage than
other carefully designed testing techniques. One
can also obtain reliability estimate using random
testing results based on operational profiles.
Effectively combining random testing with other

Software Testing

6
Journal of Computational Simulation and Modeling

Volume 1, Issue 1, 2011

testing techniques may yield more powerful and
cost-effective testing strategies.

Performance testing
Not all software systems have specifications on
performance explicitly. But every system will have
implicit performance requirements. The software
should not take infinite time or infinite resource to
execute. "Performance bugs" sometimes are used
to refer to those design problems in software that
cause the system performance to degrade.
Performance has always been a great concern and
a driving force of computer evolution. Performance
evaluation of a software system usually includes:
resource usage, throughput, stimulus-response time
and queue lengths detailing the average or
maximum number of tasks waiting to be serviced by
selected resources. Typical resources that need to
be considered include network bandwidth
requirements, CPU cycles, disk space, disk access
operations, and memory usage [Smith90]. The goal
of performance testing can be performance
bottleneck identification, performance comparison
and evaluation, etc. The typical method of doing
performance testing is using a benchmark -- a
program, workload or trace designed to be
representative of the typical system usage.
[Vokolos98]

Reliability testing
Software reliability refers to the probability of failure-
free operation of a system. It is related to many
aspects of software, including the testing process.
Directly estimating software reliability by quantifying
its related factors can be difficult. Testing is an
effective sampling method to measure software
reliability. Guided by the operational profile,
software testing (usually black-box testing) can be
used to obtain failure data, and an estimation model
can be further used to analyze the data to estimate
the present reliability and predict future reliability.
Therefore, based on the estimation, the developers
can decide whether to release the software, and the
users can decide whether to adopt and use the
software. Risk of using software can also be
assessed based on reliability information.
[Hamlet94] advocates that the primary goal of
testing should be to measure the dependability of
tested software.
There is agreement on the intuitive meaning of
dependable software: it does not fail in unexpected
or catastrophic ways. [Hamlet94] Robustness
testing and stress testing are variances of reliability
testing based on this simple criterion.
The robustness of a software component is the
degree to which it can function correctly in the
presence of exceptional inputs or stressful
environmental conditions. [IEEE90] Robustness
testing differs with correctness testing in the sense
that the functional correctness of the software is not

of concern. It only watches for robustness problems
such as machine crashes, process hangs or
abnormal termination. The oracle is relatively
simple, therefore robustness testing can be made
more portable and scalable than correctness
testing. This research has drawn more and more
interests recently, most of which uses commercial
operating systems as their target, such as the work
in [Koopman97] [Kropp98] [Ghosh98] [Devale99]
[Koopman99].
Stress testing, or load testing, is often used to test
the whole system rather than the software alone. In
such tests the software or system are exercised
with or beyond the specified limits. Typical stress
includes resource exhaustion, bursts of activities,
and sustained high loads.

Security testing
Software quality, reliability and security are tightly
coupled. Flaws in software can be exploited by
intruders to open security holes. With the
development of the Internet, software security
problems are becoming even more severe.
Many critical software applications and services
have integrated security measures against
malicious attacks. The purpose of security testing of
these systems include identifying and removing
software flaws that may potentially lead to security
violations, and validating the effectiveness of
security measures. Simulated security attacks can
be performed to find vulnerabilities.

Testing automation
Software testing can be very costly. Automation is a
good way to cut down time and cost. Software
testing tools and techniques usually suffer from a
lack of generic applicability and scalability. The
reason is straight-forward. In order to automate the
process, we have to have some ways to generate
oracles from the specification, and generate test
cases to test the target software against the oracles
to decide their correctness. Today we still don't
have a full-scale system that has achieved this goal.
In general, significant amount of human intervention
is still needed in testing. The degree of automation
remains at the automated test script level.
The problem is lessened in reliability testing and
performance testing. In robustness testing, the
simple specification and oracle: doesn't crash,
doesn't hang suffices. Similar simple metrics can
also be used in stress testing.

When to stop testing?
Testing is potentially endless. We can not test till all
the defects are unearthed and removed -- it is
simply impossible. At some point, we have to stop
testing and ship the software. The question is when.
Realistically, testing is a trade-off between budget,
time and quality. It is driven by profit models. The
pessimistic, and unfortunately most often used

Dinesh Choudhary and Vijay Kumar

7
Copyright © 2011, Bioinfo Publications

approach is to stop testing whenever some, or any
of the allocated resources -- time, budget, or test
cases -- are exhausted. The optimistic stopping rule
is to stop testing when either reliability meets the
requirement, or the benefit from continuing testing
cannot justify the testing cost. [Yang95] This will
usually require the use of reliability models to
evaluate and predict reliability of the software under
test. Each evaluation requires repeated running of
the following cycle: failure data gathering --
modeling -- prediction. This method does not fit well
for ultra-dependable systems, however, because
the real field failure data will take too long to
accumulate.

Alternatives to testing
Software testing is more and more considered a
problematic method toward better quality. Using
testing to locate and correct software defects can
be an endless process. Bugs cannot be completely
ruled out. Just as the complexity barrier indicates:
chances are testing and fixing problems may not
necessarily improve the quality and reliability of the
software. Sometimes fixing a problem may
introduce much more severe problems into the
system, happened after bug fixes, such as the
telephone outage in California and eastern
seaboard in 1991. The disaster happened after
changing 3 lines of code in the signaling system.
In a narrower view, many testing techniques may
have flaws. Coverage testing, for example. Is code
coverage, branch coverage in testing really related
to software quality? There is no definite proof. As
early as in [Myers79], the so-called "human testing"
-- including inspections, walkthroughs, reviews --
are suggested as possible alternatives to traditional
testing methods. [Hamlet94] advocates inspection
as a cost-effect alternative to unit testing. The
experimental results in [Basili85] suggests that code
reading by stepwise abstraction is at least as
effective as on-line functional and structural testing
in terms of number and cost of faults observed.
Using formal methods to "prove" the correctness of
software is also an attracting research direction. But
this method can not surmount the complexity barrier
either. For relatively simple software, this method
works well. It does not scale well to those complex,
full-fledged large software systems, which are more
error-prone.
In a broader view, we may start to question the
utmost purpose of testing. Why do we need more
effective testing methods anyway, since finding
defects and removing them does not necessarily
lead to better quality. An analogy of the problem is
like the car manufacturing process. In the
craftsmanship epoch, we make cars and hack away
the problems and defects. But such methods were
washed away by the tide of pipelined manufacturing
and good quality engineering process, which makes
the car defect-free in the manufacturing phase. This

indicates that engineering the design process (such
as clean-room software engineering) to make the
product have less defects may be more effective
than engineering the testing process. Testing is
used solely for quality monitoring and management,
or, "design for testability". This is the leap for
software from craftsmanship to engineering.

Available tools, techniques, and metrics
There are an abundance of software testing tools
exist. The correctness testing tools are often
specialized to certain systems and have limited
ability and generality. Robustness and stress testing
tools are more likely to be made generic.
Mothora [DeMillo91] is an automated mutation
testing tool-set developed at Purdue University.
Using Mothora, the tester can create and execute
test cases, measure test case adequacy, determine
input-output correctness, locate and remove faults
or bugs, and control and document the test.
NuMega's Boundschecker [NuMega99] Rational's
Purify [Rational99]. They are run-time checking and
debugging aids. They can both check and protect
against memory leaks and pointer problems.
Ballista COTS Software Robustness Testing
Harness [Ballista99]. The Ballista testing harness is
an full-scale automated robustness testing tool. The
first version supports testing up to 233 POSIX
function calls in UNIX operating systems. The
second version also supports testing of user
functions provided that the data types are
recognized by the testing server. The Ballista
testing harness gives quantitative measures of
robustness comparisons across operating systems.
The goal is to automatically test and harden
Commercial Off-The-Shelf (COTS) software against
robustness failures.

Relationship to other topics
Software testing is an integrated part in software
development. It is directly related to software
quality. It has many subtle relations to the topics
that software, software quality, software reliability
and system reliability are involved.

Related topics

• Software reliability Software testing is
closely related to software reliability.
Software reliability can be augmented by
testing. Also testing can be served as a
metric for software reliability.

• Fault injection Fault injection can be
considered a special way of testing. Fault
injection and testing are usually combined
and performed to validate the reliability of
critical fault-tolerant software and
hardware.

• Verification, validation and certification
The purpose of software testing is not
only for revealing bugs and eliminate

Software Testing

8
Journal of Computational Simulation and Modeling

Volume 1, Issue 1, 2011

them. It is also a tool for verification,
validation and certification.

Conclusion

• Software testing is an art. Most of the
testing methods and practices are not
very different from 20 years ago. It is
nowhere near maturity, although there are
many tools and techniques available to
use. Good testing also requires a tester's
creativity, experience and intuition,
together with proper techniques.

• Testing is more than just debugging.
Testing is not only used to locate defects
and correct them. It is also used in
validation, verification process, and
reliability measurement.

• Testing is expensive. Automation is a
good way to cut down cost and time.
Testing efficiency and effectiveness is the
criteria for coverage-based testing
techniques.

• Complete testing is infeasible. Complexity
is the root of the problem. At some point,
software testing has to be stopped and
product has to be shipped. The stopping
time can be decided by the trade-off of
time and budget. Or if the reliability
estimate of the software product meets
requirement.

• Testing may not be the most effective
method to improve software quality.
Alternative methods, such as inspection,
and clean-room engineering, may be even
better.

Annotated References

1. [Ballista99]
http://www.cs.cmu.edu/afs/cs/project/
edrc-ballista/www/

2. [Basili85] Victor R. Basili, Richard
W. Selby, Jr. "Comparing the
Effectiveness of Software Testing
Strategies",

3. [Beizer90] Boris Beizer, Software
Testing Techniques. Second edition.
1990

4. A very comprehensive book on the
testing techniques. Many testing
techniques are enumerated and
discussed in detail. Domain testing,
data-flow testing, transactin-flow
testing, syntax testing, logic-based
testing, etc.

5. [Beizer95] Beizer, Boris, Black-box
Testing: techniques for functional
testing of software and systems.
Publication info: New York : Wiley,
c1995. ISBN: 0471120944 Physical
description: xxv, 294 p.: ill. ; 23 cm.

6. [Duran84] Joe W. Duran, Simeon C.
Ntafos, "An Evaluation of Random
Testing", IEEE Transactions on
Software Engineering, Vol. SE-10,
No. 4, July 1984, pp438-443.

7. [Hetzel88] Hetzel, William C., The
Complete Guide to Software Testing,
2nd ed. Publication info: Wellesley,
Mass. : QED Information Sciences,
1988. ISBN: 0894352423.Physical
description: ix, 280 p. : ill ; 24 cm.

8. [Howden87] William E. Howden.
Functional program Testing and
Analysis. McGraw-Hill, 1987.

9. [IEEE90] IEEE Standard Glossary of
Software Engineering Terminology
(IEEE Std 610.12-1990), IEEE
Computer Soc., Dec. 10, 1990.

10. [Kaner93] Cem Kaner, Testing
Computer Software. 1993.

11. Discusses the purpose and
techniques for software testing.

12. [Lyu95] Michael R. Lyu , Handbook
of Software Reliability Engineering.
McGraw-Hill publishing, 1995, ISBN
0-07-039400-8

13. [Rational99]
http://www.rational.com/products/puri
fy_unix/index.jtmpl

14. [Rstcorp]
http://www.rstcorp.com/definitions/so
ftware_testing.html

15. [PERRY90] A standard for testing
application software, William E.
Perry, 1990

16. [Musa97] Software-reliability-
engineered testing practice
(tutorial);John D. Musa;

References

[1] G. Rothermel, L. Li, and M. Burnett.
Testing strategies for form-based visual
programs. In Proceedings of the 8th
International Symposium on Software
Reliability Engineering, pages 96–107,
Albuquerque, NM, November 1997.

[2] G. Rothermel, R. H. Untch, C. Chu, and
M. J. Harrold. Test case prioritization: An
empirical study. In Proceedings of the
International Conference on Software
Maintenance, pages 179–188, August
1999.

[3] G. Rothermel, Roland H. Untch,
Chengyun Chu, and M. J. Harrold.
Prioritizing test cases for regression
testing. IEEE Transactions on Software
Engineering, 27(10):929–948, October
2001a.

Dinesh Choudhary and Vijay Kumar

9
Copyright © 2011, Bioinfo Publications

[4] Gregg Rothermel, Margaret Burnett, Lixin
Li, Christopher Dupuis, and Andrei
Sheretov. A methodology for testing
spreadsheets. ACM Transactions on
Software Engineering and Methodology,
10(1):110–147, January 2001b.

[5] Karen J. Rothermel, Curtis R. Cook,
Margaret M. Burnett, Justin Schonfeld, T.
R. G. Green, and Gregg Rothermel.
WYSIWYT testing in the spreadsheet
paradigm: an empirical evaluation. In
Proceedings of the 22nd International
Conference on Software Engineering,
pages 230–239. ACM Press, 2000.

[6] Andrew Sears. Layout appropriateness: A
metric for evaluating user interface widget
layout. IEEE Transactions on Software
Engineering, 19(7):707–719, 1993.

[7] Forrest Shull, Ioana Rus, and Victor
Basili. Improving software inspections by
using reading techniques. In Proceedings
of the 23rd International Conference on
Software Engineering, pages 726–727.
IEEE Computer Society, 2001.

[8] Ian Sommerville. Software Engineering.
Addison-Wesley, 6th edition, August
2000.

[9] John Steven, Pravir Chandra, Bob Fleck,
and Andy Podgurski. jRapture: A
capture/replay tool for observation-based
testing. In Proceedings of the
International Symposium on Software
Testing and Analysis, pages 158–167.
ACM Press, 2000.

[10] T. Tsai and R. Iyer. Measuring fault
tolerance with the FTAPE fault injection
tool. In Proceedings of the 8th
International Conference on Modeling
Techniques and Tools for Computer
Performance Evaluation, pages 26–40,
1995.

[11] Timothy K. Tsai and Navjot Singh.
Reliability testing of applications on
Windows NT. In Proceedings of the
International Conference on Dependable
Systems and Networks, New York City,
USA, June 2000.

[12] Raja Vall´ee-Rai, Laurie Hendren, Vijay
Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot - a Java
optimization framework. In Proceedings of
CASCON 1999, pages 125–135, 1999.

[13] Jeffrey M. Voas. PIE: a dynamic failure-
based technique. IEEE Transactions on
Software Engineering, 18(8):717– 735,
1992.

[14] F. Vokolos and P. Frankl. Pythia: A
regression test selection tool based on
textual differencing. In Third International
Conference of Reliability, Quality, and

Safety of Software Intensive Systems,
May 1997.

[15] Elaine Weyuker. Axiomatizing software
test data adequacy. IEEE Transactions on
Software Engineering, (12): 1128–1138,
December 1986.

[16] Elaine J. Weyuker, Stewart N. Weiss, and
Dick Hamlet. Comparison of program
testing strategies. In Proceedings of the
Symposium on Testing, Analysis, and
Verification, pages 1–10. ACM Press,
1991.

[17] James A. Whittaker. What is software
testing? and why is it so hard? IEEE
Software, 17(1):70–76, January/February
2000.

[18] James A. Whittaker and Jeffrey Voas.
Toward a more reliable theory of software
reliability. IEEE Computer, 32(12): 36–42,
December 2000.

[19] W.E. Wong. On Mutation and Data Flow.
PhD thesis, Department of Computer
Science, Purdue University, West
Lafayette, IN, December 1993.

[20] W.E.Wong, J.R. Horgan, S. London, and
H. Agrawal. A study of effective
regression testing in practice. In
Proceedings of the 8th International
Symposium on Software Reliability
Engineering, pages 230–238, November
1997.

[21] Michael Young and Richard N. Taylor.
Rethinking the taxonomy of fault detection
techniques. In Proceedings of the 11th
International Conference on Software
Engineering, pages 53–62. ACM Press,
1989.

[22] Hong Zhu, Patrick A. V. Hall, and John H.
R. May. Software unit test coverage and
adequacy. ACM Computing Surveys,
29(4):366–427, 1997.

