
Load Balancing in Amoeba
1S.R. Durugkar and 2Pritam Jape

1

 2
e-mail: santoshdurugkar@gmail.com, pritamaditya_77@rediffmail.com

Abstract—In this paper we represent the use of load

balancing using job initiation and process migration came
out on Amoeba. And also indicate the need for a load
balancing facility in a distributed system to improve system
performance, e.g., the average response time of processes. A
number of load balancing algorithms, including the bidding
and neighboring algorithms, have been studied in this work.
A comparison between these algorithms under various
conditions is presented, which indicates that in a system with
few computers a centralized algorithm outperforms a
distributed one and job initiation plays an important role in
a load balancing scheme.

Keywords: Amoeba, Load Balancing, Random,
distributed.

I. INTRODUCTION
A distributed computer system with 10-100 of
computers connected by high-speed networks has many
advantages over a system that has the same computers.

One of the important advantages of a distributed
system is its provision for efficient resource sharing.
This indicates that under the same conditions a
distributed system should provide much better service
than a traditional system in terms of performance and
reliability. In order to achieve the performance potential
of a distributed system, a dynamic load balancing
facility is required. This facility monitors load variation
to detect load imbalance, and then takes action to
balance the load. Placing, replacing (redistributing) and
replicating some objects in a system are the possible
actions which can be adopted by a load balancing
facility.

In this paper, we presenting the few points of load
balancing, which only takes Processes into account. A
considerable number of research projects on load
balancing has been carried out over many years due to
the potential performance gain from this service.

Most of the research has focused on load balancing
algorithms and load measurement. The aim is to find
general effective load balancing algorithms with
overhead as low as possible. The methods used in the
past range from analytic study plus simulation to
implementation plus testing. Due to the difficulty of
implementing a load balancing facility in a distributed
system, the majority of studies fall into simulation.

II. LOAD BALANCING FACILITIES IN AMOEBA

Amoeba wasn’t designed and implemented with
dynamic load balancing in mind because the designers

advocate the processor-pool model which assumes the
number of processors is more than the number of
processes. However, current computing environments
typically contain autonomous workstations connected
through networks, which requires load balancing for its
performance.

A. The Structure of Load Balancing Facility
in Amoeba

In order to support both preemptive and nonpreemptive
load balancing strategies, we studied the load balancing
facility as two sorts of processes: load balancers and
process migration servers.

A load balancer makes decisions on when to move
which process to where, while, a migration server
carries out the decision made by a load balancer to
move processes between computers. Therefore, the load
balancer plays the policy role in this facility. On the
other hand, a process migration server supplies the
mechanism in the load balancing facility. This
separation between policy and mechanism offers a
flexible structure for our experimental study of various
load balancing algorithms. The process migration server
provides the same service, regardless of the differences
between policies.

B. Process Migration on Amoeba Operating system

An Amoeba process may have multiple threads, each of
which is an object that may be scheduled by the kernel.
During a process migration, all threads of the process
must be suspended and moved from the source to the
destination. The execution state of a process is

arshaled into messages and sent to the destination to
reconstitute. Besides the execution state, the memory
space of a process which contains other states must be
transferred as well. Although a number of techniques
are available for transferring the memory space of a
process, such as lazy copying and a shared file server, at
this stage we have limited ourselves to a straightforward
implementation – direct copying, because Amoeba does
not support virtual memory. Apart from migrating
execution state and memory space of a process, the
communication state of the process has to be transferred
to the destination. In Amoeba, each thread of the
process has its own communication state which
remembers the stage of these ongoing RPCs and the
role the thread plays (client or server) in those RPCs.

SCOE, Pune
KBP, Poly, Kopargaon

International Journal of Robotics Applications
Volume 1, Issue 1, 2011

 International Journal of Robotics Applications
 Volume 1, Issue 1, 2011, pp-01-02
 Available online at: http://www.bioinfo.in/contents.php?id=110

These communication states, including the capabilities
of its RPC partners, are kept in the kernel.

III. LOAD BALANCING ALGORITHMS

There are a large number of load balancing algorithms.
These algorithms can be classified into different
categories. In the first stage, we studied some simple
algorithms which form two classes: nonpreemptive and
preemptive. In the non-preemptive class, we have a
number of job initiation algorithms:

A. Centralized Initiation

In the centralized approach, there is one load balancer
in the whole system which is responsible for assigning
new jobs to computers. When a new job arrives, the
load balancer relies on its periodically collected load
information to determine the machine to execute the
new job and starts the job on that machine.

B. Distributed Initiation

There is a load balancer on each computer, which
broadcasts its load to others whenever it detects a load
change in its computer. When a new job arrives, the
load balancer, based on its own load, the received load
information and the age of these information,
determines which computer should host the new job and
starts the job on that computer. This algorithm tries to
start a job on a destination without negotiation.
Otherwise, the job is started locally. The aim of using
the filter is to reduce the number of RPCs and speed up
the decision-making process.

C. Random Initiation

This is also a distributed method. When a new job
arrives at a computer, the local load balancer randomly
selects a computer to run the job if it is overloaded at
that moment. Otherwise, the job is started locally.

D. Central

There is one load balancer running computers to obtain
system load information.

When the load balancer detects load imbalance
instances, it selects one of the computers with the
lowest load to accept a process from an overloaded
machine. In the system, which regularly polls the other.

E. Random Selection

Within this algorithm, when a computer becomes
overloaded, it randomly selects another computer to

shift its load, no matter whether the computer is under
loaded or not.

F. Neighbor

As described in above, each computer regularly sends
request messages to its neighbors, containing its current
load information. When the neighbor receives this
message and accepts the request, then these two
computers become a pair. Later, based on the load
difference between them, the computers decide to shift
some load from one to another. After that, the pair is
broken.

G. Broadcast

This is a server-initiated algorithm. Load balancers
exchange their load information whenever the load is
changed. When a computer becomes underloaded (in
our case, when it becomes idle), its load balancer
checks whether there are overloaded machines from the
received load information. If so, it first selects a
computer and a process that is running on that
computer, then calls the process migration server to
move this process.

IV. CONCLUSION

In this paper, we studied the various load balancing
algorithms on the Amoeba system. After studying the
various load balancing algo. we can say that a
centralized load balancing strategy is more effective
than a distributed one when there are 10 - 20 computers
in a system. This is due to the fact that a centralized
approach creates much less overhead than a distributed
one. Because the authority to make load balancing
decision is concentrated in one place, it avoids possible
conflicts between different decision makers, and the
negotiation overhead which is used by most distributed
algorithms to avoid conflicts.

REFERENCES
[1] A. Barak, A. Shiloh, and R. Wheeler. Flood Prevention in the

MOSIX Load-Balancing Scheme. TCOS Newsletter, 3(1), 1989.
[2] R.M. Bryant and R.A. Finkel. A Stable Distributed Scheduling

Algorithm. In Proceedings of the 2nd International Conference
on Distributed Computing Systems, April 1981.

[3] T.L. Casavant and J.G. Kuhl. A Taxonomy of Scheduling in
General-purpose Distributed Computing Systems. IEEE Tkans.
on Software Eng., 14(2), Feb. 1988.

[4] F. Douglis and J. Ousterhout. Transparent Process Migration:
Design Alternatives and Sprite Implementation. Software and
Ezperience, 1991.

[5] P.K. Sinha, Distributed operating System.

International Journal of Robotics Applications
Volume 1, Issue 1, 2011

 International Journal of Robotics Applications
 Volume 1, Issue 1, 2011, pp-01-02
 Available online at: http://www.bioinfo.in/contents.php?id=110

