
International Journal of Knowledge Engineering,ISSN: 0976–5816, Vol. 1, Issue 1, 2010, PP-01-04

Copyright © 2010, Bioinfo Publications
International Journal of Knowledge Engineering, ISSN: 0976–5816, Vol. 1, Issue 1, 2010

LetSurf - A Distributed Caching System

Mangesh Bedekar, Prateek Gupta and Suvrajyoti Chatterjee
BITS Pilani, K. K. Birla, Goa Campus, NH-17B, Bypass Road, Zuarinagar, Goa, India,
mangesh.bedekar@gmail.com, mailtoprateek@gmail.com, suvrajyoti.c@gmail.com

Abstract - We propose a system wherein each computer (connected through high speed LAN) will cache
web objects as the user browses through the Internet and make that cache available to the other users
(connected to the system). This will exponentially enhance Internet experience of the users in terms of
download and surfing speeds. This will also help in reducing the load on the main Internet bandwidth.
This will also help in reducing the load on the proxy server, decentralized filtering. Also it facilitates
collaborative n social web surfing by allowing the users to rank, comment, suggest similar pages, etc. We
will also include small application which will allow the user to examine his browsing patterns.
Keywords- Web Caching, Web Proxy, Distributed Caches, Collaborative Surfing

Introduction
The individual’s importance as an active member
of the internet grows every day. Starting off as
passive surfer of data, users today contribute to
forums, collaborate on projects and lead active
cyber lives on Facebook. Though we have come a
long way, we still lack the ability to communicate
and utilize our local communities as we do in real
life. The ability to trust and utilize our geographic
peers opens up endless possibilities and would be
our first step at creating James Cameron’s fabled
living planet in avatar, where all our personal
computers are part of an immense organism,
processing, storing and retrieving information at
scales unimaginable. As part of this idea, we
utilized the power of distributed storage to create
an application which accomplishes a simple but
essential task-making the internet as fast as it
should be. Going further, we have developed proof
of concept modules for a system which allows
users to explore community preferences and
utilize social opinion by storing and retrieving user
ratings and suggestions about websites.

Distributed Caching
LetSurf emphasizes on maintaining a local cache
on each user’s computer which can be used to
serve another user when requested. Whenever a
user requests for a resource, the resource will be
fetched from the LAN (if available on any client),
otherwise the resource will be fetched from the
Internet. The system is implemented on a two tier
model which has a Server Module running on
Central Node & Client Module running user’s
computer. The client module will use some user
defined amount of hard disk space & processing
power on the user’s computer.

Collaborative Surfing
The system allows the user to view and contribute
to the social opinion about a particular web

resource by viewing other’s comment &
posting their own. Each web resource will be
treated as object which will have attributed like
rank, user’s comments, etc. These objects will
be stored in a database and fetched as and
when required.

Embedding Application
We can embed applications in the user’s
browser window which help the user to
examine his browsing pattern, etc.

Security Implementation
Some of the security issues that cropped up
during development of the system were Man
in the Middle (MITM) attacks, intentional or
unintentional cache corruption.

System Architecture
The system runs on a two tier model:
• Client Modules
• Central Server Module
The basic structure of both modules is given
below:

Client Module Structure
The module provides the following services:
• Connection Initiation Ability to connect to a
remote server socket
• Connection Acceptance Ability to accept
connections under certain conditions, as
stipulated by protocol
• Caching Data accessed is cached at the
user’s computer. The data is stored locally in
the cache and is maintained with a URL-
filename map, which allows the system to
retrieve data for a specific URL. Data in the
cache is maintained till an expiry date as set in
the meta-data, beyond which it is deleted. If
the cache size limit is crossed, older data is

LetSurf - A Distributed Caching System

International Journal of Knowledge Engineering, ISSN: 0976–5816, Vol. 1, Issue 1, 2010 2

purged. The corresponding entries in the central
server are also cleaned. All html standard cache
directives are obeyed.
• Administration The user has a control over when
the system is active, or can set options regarding
what should be cached.

Central Server Structure
The central server needs to deliver fast replies to
multiple queries.
The central server must provide an ability to add
an entry when a search request returns a null set.
Also, it must provide for an entry deletion service
which allows modules to delete entries in case of
connection failures and cache purges, among
others. Storage of large data sets is carried out in
systems such as the Bigtable distributed storage
system for Google, etc. We hope to implement
these in further versions.

Scalability:
Single machine server may be enough for smaller
network. Distributed Database server will be a
scalable option. Each user computer or device
carries a module which provides basic services
needed for our system. All requests and replies by
and to the browser are sent to through this
module. When a request from a browser is made
(User Y), the module contacts a central server,
which maintains a URL-IP map in a database, and
requests address identifier of a computer which
has the particular resource in its cache. If another
computer X is found, the cached copy of that piece
of information in X is returned to the user Y. If no
computer with that particular resource is found,
then the request is directed to the internet for a
fresh fetch of data. An entry for this particular
resource is made in the central server so that the
local cached copy of this resource is available to
other users from now on. A table is also
maintained which contains the list of online users’
IP’s. When a user goes offline, the user is
removed from the table of online users. In case a
match is found in the URL-IP map and the user is
offline, then the request is not redirected to the
user.
Module - Server Communication
Module server communication for search or
deletion queries may be carried out using a simple
protocol implemented over the established TCP
connection.
Connections for retrieval of cached data should be
done through a reliable connection to prevent data
corruption. Thus, HTTP over TCP would be the
preferred protocol for such a transfer. The system
is scalable to large networks through the use of

usernames, instead of a direct IPs, for
references within the system. Also, setting
usernames and passwords allows for an
important layer of encryption for each user,
which may be implemented through an SSL
connection between the central server and
each client module. Such scalability will be
implemented at a later stage.

Implementation Details
Both Client module and Central server module
shared a common set of functionalities which
are provided by a general proxy server. Hence
a proxy server was used as a common base
with separate modifications for each module.

Base Proxy:
Functionalities provided are as follows:
• Connection Initiation
• Connection Acceptance
• Caching
• Indexing
• Proxy Chaining
• Script Injection

Modification for Client Module:
The base proxy was modified to differentiate
between requests coming from the user’s
browser & request coming from the Central
Server. The client module redirects the
requests selectively based on the decision
made in the above statement.

Modification for Server Module:

Database integration
A MySQL server is storing all the necessary
data. A persistent connection to the database
made as soon as the server module starts.

Search function
When a client requests a particular URL, the
server runs a SQL search query on the
MySQL database through the connection
object. The database server traverses the IP –
URL table to find a match and return the IP of
the client if match is found (returns null, if
match not found). The Persistent Connection
object with the MySQL database to issue a
query through a method of the object.

Database Updating:
INSERT & UPDATE SQL queries are used to
modify the IP – URL table whenever a client
requests for a web resource.

Mangesh Bedekar, Prateek Gupta and Suvrajyoti Chatterjee

Copyright © 2010, Bioinfo Publications
International Journal of Knowledge Engineering, ISSN: 0976–5816, Vol. 1, Issue 1, 2010

3

Database Maintenance:
Whenever the client loses some data (in case of
cache corruption or data expiry or cache purging),
the central proxy server updates it’s IP – URL
table accordingly.

Redirection scheme:
On an incoming request, the central server runs
the Search function to retrieve the IP of the client
module having the particular resource.

• If match is found, the central server chains
itself to that particular client module proxy
which fetches the data from its cache.

• If match is not found, the central server
redirects the request to the Internet for a fresh
fetch of data.

In either cases, the IP-URL table is updated.

Security Issues
In a distributed caching system, one of the major
concerns regarding implementation is the security
aspect. Caches may store private data, and
sensitive private browsing information. Our
implementation of the distributed caching
mechanism aims to maintain the integrity of the
user’s data.

MITM attacks
The man-in-the-middle attack (often abbreviated
MITM), or bucket-brigade attack, or sometimes
Janus attack, is a form of active eavesdropping in
which the attacker makes independent
connections with the victims and relays messages
between them, making them believe that they are
talking directly to each other over a private
connection, when in fact the entire conversation is
controlled by the attacker. MITM attacks are
generally carried out by using various transport
layer and lower levels hacks like ARP poisoning
and port stealing.

MITM in the LetSurf system:
There is a possibility of MITM in the LetSurf
system, as explained by the example given below:
A social networking website, let us say
http://www.sns.com is used by two users A and B.
The login page of http://www.sns.com passes the
form data in POST format.

In the post format, the requested URI is the same,
and the data is passed to the URI within the
content of the request. If A logs into
http://www.sns.com from IP 10.4.1.46.

Table 1-URL Map maintained in the server
URL IP

http://www.sns.com/login.php 10.4.1.46

Now when user B attempts to log in. The
central server will check the requested URL
(http://www.sns.com/login.php) and redirect
the request to get re-routed from the 10.4.1.46
IP. At this stage all private data of user B
passes through user A’s computer and user A
may eavesdrop to find out sensitive
information about user B’s account.

Our solution to prevent MITM attacks:
Since POST requests may share the same
URL for different content type, we want to
prevent any un-authorised eyes to view the
private information passed in the content of
the post requests. We will be detecting the
request method at the central servers (GET or
POST) and will be storing only the GET
requests at the URL-IP table. This will ensure
that no private data is viewed by an un-
authorised 3rd party. We are also on
implementing a two way SSL type encryption,
which will use asymmetric and symmetric key
encryption to encrypt the requests and the
responses between the client and the server.

Proxy Cache poisoning
The cached data of a user’s browsing patterns
is stored in the user’s own hard disk and
consequently he may have access to it. Data
corruption may occur possibly due to
erroneous handling of the cached files by the
users. Data may also be tampered by the user
to change important aspects of a page (For
eg. form actions which may be changed in a
way to force the user to submit private
information on a rogue server). To deal with
cache poisoning we are implementing a
symmetric encryption with corruption
detection.

Symmetric Key Encryption:
The encryption key is trivially related to the
decryption key, in that they may be identical or
there is a simple transformation to go between
the two keys. The keys, in practice, represent
a shared secret between two or more parties
that can be used to maintain a private
information link.

LetSurf - A Distributed Caching System

International Journal of Knowledge Engineering, ISSN: 0976–5816, Vol. 1, Issue 1, 2010 4

Symmetric v/s Asymmetric Key Encryption:
Unlike symmetric algorithms, asymmetric key
algorithms use a different key for encryption than
for decryption. i.e. a user knowing the encryption
key of an asymmetric algorithm can encrypt
messages, but cannot derive the decryption key
and hence cannot decrypt messages encrypted
with that particular key.

Why Symmetric Key Encryption?
Since one of our primary objectives is to increase
the internet speeds, decryption speed plays a
major role in selecting the algorithms involved in
the process.
Symmetric-key algorithms are generally much less
computationally intensive than asymmetric key
algorithms. In practice, asymmetric key algorithms
are typically hundreds to thousands times slower
than symmetric key algorithms.

Solution to data corruption problem:
We will maintain a table of respective filenames
and their MD5 checksum of all cached files to
prevent cache poisoning. MD5 digests have been
widely used in the software world to provide some
assurance that a transferred file has arrived intact.
For example, file servers often provide a pre-
computed MD5 checksum for the files, so that a
user can compare the checksum of the
downloaded file to it. In cryptography, MD5
(Message-Digest algorithm 5) is a widely used
cryptographic hash function with a 128-bit hash
value. An MD5 hash is typically expressed as a
32-digit hexadecimal number. It is conjectured that
it is computationally infeasible to produce two
messages having the same message digest, or to
produce any message having a given pre-
specified target message digest. The MD5
algorithm is designed to be quite fast on 32-bit
machines.So, if a proxy detects that the MD5
checksum of that file is not matching the stored
MD5 checksum which is stored in the hash tables.
It will detect data corruption and redirect the end
user to retrieve the URL directly from the internet.
The proxy will delete the corrupt file and inform the
central server to modify their IP URL map tables.

References
Proxy:

[1] Thomas Keir (2006). Beginning Ubuntu
Linux: From Novice to Professional.
Apress.

HTTP Standards:

[1] RFC 2616, Hypertext Transfer Protocol --
HTTP/1.1, R. Fielding, J. Getty, J. Mogul,

H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee (June 1999)

Rabbit Proxy v3.2:

[1] http://rabbit-proxy.sourceforge.net/.
[2] http://rabbit-

proxy.sourceforge.net/faq.shtml
[3] http://rabbit-

proxy.sourceforge.net/RabbIT3-
bin.tar.gz

[4] http://rabbit-
proxy.sourceforge.net/RabbIT3-
src.tar.gz

[5] http://www.nada.kth.se/projects/prup9
8/web_proxy/doc/.

MD5:

[1] Berson, Thomas A. (1992).
"Differential Cryptanalysis Mod 232
with Applications to MD5".
EUROCRYPT. pp. 71–80

[2] Bert den Boer; Antoon Bosselaers
(1993). Collisions for the Compression
Function of MD5. Berlin ; London:
Springer. pp. 293–304.

