
Abstract :

In this paper, we explore the use of an genetic
algorithm for materialized view selection based on
multiple global processing plans for queries so as to
achieve both good query performance and low view
maintenance cost.

Keywords : Data warehouse , Materialized view , Genetic
Algorithm , Query , MVPP etc.

1. INTRODUCTION

DATA warehousing is an approach to the integration
of data from multiple, possibly very large, distributed,
heterogeneous databases and other information sources.
A data warehouse (DW) is a repository of integrated
information available for querying and analysis. To avoid
accessing the original data sources and increase the
efficiency of the queries posed to a DW, some intermediate
results in the query processing are stored in the DW. These
intermediate results stored in a DW are called materialized
views. On a sufficiently abstract level, a DW can be seen
as a set of materialized views over the data extracted from
the distributed heterogeneous databases. There are many
research issues related to DWs [1], among which
materialized view selection is one of the most challenging
ones. On one hand, materialized views speed up query
processing. On the other hand, they have to be refreshed
when changes occur to the data sources. Therefore, there
are two costs involved in materialized view selection: the
query processing cost and the materialized view
maintenance cost. The question we are interested in is what
views should be materialized in order to make the sum of
the query performance and view maintenance cost minimal.

The materialized view selection involves a difficult trade-
off between query performance and maintenance cost.

 Materializing all the views in a DW can achieve
the best performance but at the highest cost of view

maintenance.

 Leaving all the views virtual will have the lowest
view maintenance cost but the poorest query
performance. The word “virtual” here means that
no intermediate result will be saved in the DW.

 We can have some views materialized (e.g., have
those shared views materialized), and leave others
virtual. In this way we may achieve an optimal (or
near optimal) balance between the performance gain
and maintenance cost.

1.1. Real world Uses Genetic Algorithm:

Optimized Telecommunications Routing:

Do you find yourself frustrated by slow LAN
performance, inconsistent internet access, a FAX machine
that only sends faxes sometimes, your land line’s number
of ‘ghost’ phone calls every month? Well, GAs are being
developed that will allow for dynamic and anticipatory
routing of circuits for telecommunications networks. These
could take notice of your system’s instability and anticipate
your re-routing needs. Using more than one GA circuit-
search at a time, soon your interpersonal communications

Real life problem Solved using Genetic Algorithm and Data Warehouse
H.S. Fadewar1 and G.N. Shinde2

1

fadewar_hsf@yahoo.com
2Principal, Indira Gandhi Mahavidyalaya, CIDCO, Nanded

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-01-04
 Available online at: http://www.bioinfo.in/contents.php?id=280

 Sinhgad Insitute of Management and Computer Application, Narhe, Pune.

problems may really be all in your head rather than in your
telecommunications system. Other GAs are being
developed to optimize placement and routing of cell towers
for best coverage and ease of switching, so your cell phone
and blackberry will be thankful for GAs too[2].

Encryption and Code Breaking:

On the security front, GAs can be used both to create
encryption for sensitive data as well as to break those codes.
Encrypting data, protecting copyrights and breaking
competitors’ codes have been important in the computer
world ever since there have been computers, so the
competition is intense. Every time someone adds more
complexity to their encryption algorithms, someone else
comes up with a GA that can break the code. It is hoped
that one day soon we will have quantum computers that
will be able to generate completely indecipherable codes.
Of course, by then the ‘other guys’ will have quantum
computers too, so it’s a sure bet the spy vs. spy games will
go on indefinitely[3].

2. MATERIALIZED VIEW SELECTION

Materialized view selection consists of three
optimization problems, i.e., query optimization, multiple
query optimization, and materialized view selection. It
should be pointed out that a set of locally optimized queries
may not be optimal anymore if multiple queries are
considered together. Similarly, an optimal set of multiple
queries does not guarantee the optimal selection of
materialized views because a different set may lead to better
materialized views. It is important to consider all three
problems together in materialized view selection.

2.1 Query and Multiple Query Optimization:

A lot of research has been done on this topic query
optimization. A DW is a repository of integrated
information available for querying analysis. One issue we
have to deal with is multiple query processing.

2.2 Materialized View Selection

In DW, selected information is extracted in advance
and stored in a repository. A DW can therefore be seen as
a set of materialized views defined over the sources. The
problem we are dealing with now is how to select the views
to be materialized so that the cost of query processing and
view maintenance for all the nodes in a global processing
plan is minimized. An easy approach would be to use
exhaustive search to find the optimal set of materialized
views on the set of queries. However, this approach is
impractical if the search space is big. Heuristic algorithms
have to be used to trim the search space in order to get the
results quickly [5], [6]. However, the performance of a
heuristic algorithm depends heavily on the quality of
heuristics which may be difficult and /or costly to obtain
in practice. Heuristic algorithms also get stuck easily in a
local optimum.

Compared with heuristic algorithms, Genetic
algorithms have many advantages, such as searching from
a population of points using probabilistic transition rules.
In order to avoid an exhaustive search in the whole solution
space and obtain a better solution than that obtained by
heuristic methods, we propose a new Genetic approach to
materialized view selection.

3. GENETIC ALGORITHMS FOR
MATERIALIZED VIEW SELECTION

Genetic algorithms is solve many real world
problems with success [19]. They use population based
stochastic search strategies and are unlikely to be trapped
in a poor local optimum. They make few assumptions about
a problem domain yet are capable of incorporating domain
knowledge in the design of chromosome representation
and variation operators. They are particularly suited for
large and complex problems where little prior knowledge
is available.

The genetic algorithm apply on the above
motivating example taken from[1,4] and selects the best

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-01-04
 Available online at: http://www.bioinfo.in/contents.php?id=280

set of materialized views with the minimal total cost for a
particular global processing plan. The results

Details of our implementation are described in the
following subsections.

Abstract framework for genetic algorithm

 BEGIN

 Generate the initial population, G(0);

 Evalulate all indivisuals in G(0);

 t:=0;

 REPEAT

 t=t+1;

 Select G(t) from G(t-1);

 After G(t) using variation operat;

 Evaluate all indivisuals in G(t);

 UNTIL a satisfactory solution is found;

 End;

Mapping from a DAG (i.e., genotype) to a binary string
(i.e., phenotype).

1. Input a global processing plan represented by DAG.

2. Use a certain graph traversal strategy, such as
breadth first, depth first or other problem specific
strategies, to traverse through all nodes in the DAG
and produce an order list of nodes.

3. Create a binary string according to this order ,where
0 indicates that the corresponding node is not
materialized and 1 represent that the corresponding
node is materialized. The binary string is also called
the mapping array[7].

3.1 Representation of Solutions

Representation is one of the key issues in problem
solving. Good representations often lead to a more efficient
algorithm for solving a problem. Different problems usually
require different representations. The representation of
materialized views for optimization is based on DAGs.
Each DAG is encoded as a binary string[8].

3.2 Fitness Functions in our Genetic Algorithms

Since the objective in our cost model is to minimize
the sum of query and maintenance cost while the fitness
function of Genetic algorithm is usually defined as
maximization, we have applied the following simple

transformation to define the fitness function from the cost

f(x)= {C
max

 –c(x), when c(x) < C
max

 0, otherwise

Where c(x) denote the cost function and f(x) denote
the fittest function . There are a lot of ways of choosing
the coefficient Cmax. It can be set to the largest value C(x)
in the current population or the largest in the last k
generations. Each individual in a population represents a
set of materialized views. Its fitness depends on the total
query and maintenance cost .

3.3 Crossover :

Crossover encourages information exchange among
different individuals. It helps the propagation of useful
genes in the population and assembling better individuals.
One-point crossover is used in our Genetic algorithms for
its simplicity and effectiveness in our case. In a Genetic
algorithm, the crossover is implemented as a kind of cut-
and-swap operator [09]. For example,given two individuals

L1 = 1100100 | 0100100001111

and

L2 = 0100110 | 1011000100111

Where L1 indicates that nodes {Q5, Q4, Q1, result4, tmp3,
tmp1, tmp2, tmp5, and tmp6} are materialized and L2

means that nodes {Q4, Q1, result5, result2, result3, tmp9,
tmp7, tmp2, tmp5, and tmp6} are materialized. Assume
the crossover point (indicated by symbol |) is chosen at
random as seven, between one and 20. Then the two
offspring after crossover are

L’1 = 1100100 | 1011000100111 and

L’2 = 0100110 | 0100100001111

where L’1 indicates that nodes {Q5, Q4, Q1, result2, result3,
tmp9, tmp7, tmp2, tmp5, and tmp6} are materialized and
L’2 shows that nodes {Q4, Q1, result5, result4, tmp3, tmp1,
tmp2, tmp5, and tmp6 }are materialized. Two new sets of
materialized views are generated which have inherited
genes from both parents.

3.4 Mutation :

Although crossover can put good genes together to
generate better offspring. It cannot generate new genes.
Mutation is needed to create new genes that may not be

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-01-04
 Available online at: http://www.bioinfo.in/contents.php?id=280

present in any member of a population and enables the
algorithm to reach all possible solutions (in theory) in the
search space. Mutation in Genetic algorithm is
implemented as a bit-flipping operator. Given an
individual[10]

L = 11001000100100001111

A random position between onr and 20 will be generated
first. Say it is 16. Then the 16th bit will be flipped from 0
to 1 with a probability to produce the offspring

L’ = 110010001001000011111

4. CONCLUSION

In this paper the study has mainly focused on how
to select of views to be materialized so that the sum of
processing a set of queries and maintaining the materialized
views is minimized. A genetic algorithm is proposed to
solve view selection problem.
5. REFRENCES

[01] B. Kristin, M. C. Ferris, and Y. Ioannidis, “A genetic
algorithm for database query optimization,” Univ.
Wisconsin, Madison, Tech. Rep.TR1004, 1991.

[02] M. Gregory, “Genetic algorithm optimization of
distributed database queries,” in Proc. ICEC, 1998, pp.
271–276.

[03] Y. E. Ioannidis, “Query optimization,” ACM Comput.
Surv., vol. 28, no. 1, pp. 121–123, Mar. 1996.

[04] S. Chaudhuri, “An overview of query optimization in
relational systems,”in Proc. 17th ACMSIGACT-
SIGMOD-SIGART Symp. Principles Database Syst.
(PODS), June 1998, pp. 34–43.

[05] C. Wang and M.-S. Chen, “On the complexity of
distributed query optimization,” IEEE Trans. Knowl.
Data Eng., vol. 8, pp. 650–662, Aug.1996.

[06] A. Ho and G. Lumpkin, “The genetic query optimizer,”
in Genetic Algorithmsat Stanford 1994, J. R. Koza, Ed.
Stanford, CA: Stanford Univ.,1994, pp. 67–76.

[07] C. Zhang and J . Yang, “Genetic algorithm for
materialized view selection in data warehouse
environments,” in Proc. First Int. Conf. Data
Warehousing Knowledge Discovery, Lecture Notes in
Computer Science, Florence, Italy, 1999.

 [08] D. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning. Reading, MA: Addison-Wesley,
1989.

[09] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of
Evolutionary Computation. Amsterdam, The
Netherlands: IOP/Oxford Univ. Press,1997.

[10] R. E. Smith, D. E. Goldberg, and J. A. Earickson, “SGA-
C: A C-language implementation of simple genetic
algorithm,” TCGA, Clearing House for Genetic
Algorithms, Univ. Alabama, Dept. Eng.
Mech.,Tuscaloosa, Rep. 91 002, Mar. 1994.

BIOINFO Genetic Programming
Volume 1, Issue 1, 2011

 BIOINFO Genetic Programming
 Volume 1, Issue 1, 2011, pp-01-04
 Available online at: http://www.bioinfo.in/contents.php?id=280

