IN SILICO ANALYSIS FOR THE GENOME-WIDE IDENTIFICATION OF AP2 SUPERFAMILY TRANSCRIPTION FACTORS IN PEARL MILLET

A. ANJANI1, J.V. RAMANA2, A.K. SHANKER3*, A.M. LAL4, Y. SATISH5
1Department of Molecular Biology and Biotechnology, SVU Agricultural College, Tirupathi, 517502, Acharya N. G. Ranga Agricultural University, Lam, 522034, India
2Department of Genetics and Plant Breeding, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Lam, 522034, Guntur, Andhra Pradesh, India
3Principal Scientist, Department of Plant Physiology, ICAR-Central Research Institute for Dryland Agriculture (CRIDA), Hyderabad, 500059, Telangana, India
4Department of Genetics and Plant Breeding, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Lam, 522034, Guntur, Andhra Pradesh, India
5Senior Scientist, Department of Genetics and Plant Breeding, RARS, Maruteru, Acharya N. G. Ranga Agricultural University, Lam, 522034, Andhra Pradesh, India
* Corresponding Author : arunshank@gmail.com

Received : 01-06-2022     Accepted : 27-06-2022     Published : 30-06-2022
Volume : 14     Issue : 6       Pages : 11391 - 11396
Int J Agr Sci 14.6 (2022):11391-11396

Keywords : AP2 superfamily, Transcription factors, Pearlmillet, In silico mapping, Protein folding
Academic Editor : Anjani Kumari
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to Department of Molecular Biology and Biotechnology, SVU Agricultural College, Tirupathi, 517502, Acharya N. G. Ranga Agricultural University, Lam, 522034, Guntur, Andhra Pradesh, India
Author Contribution : All authors equally contributed

Cite - MLA : ANJANI, A., et al "IN SILICO ANALYSIS FOR THE GENOME-WIDE IDENTIFICATION OF AP2 SUPERFAMILY TRANSCRIPTION FACTORS IN PEARL MILLET." International Journal of Agriculture Sciences 14.6 (2022):11391-11396.

Cite - APA : ANJANI, A., RAMANA, J.V., SHANKER, A.K., LAL, A.M., SATISH, Y. (2022). IN SILICO ANALYSIS FOR THE GENOME-WIDE IDENTIFICATION OF AP2 SUPERFAMILY TRANSCRIPTION FACTORS IN PEARL MILLET. International Journal of Agriculture Sciences, 14 (6), 11391-11396.

Cite - Chicago : ANJANI, A., J.V. RAMANA, A.K. SHANKER, A.M. LAL, and Y. SATISH. "IN SILICO ANALYSIS FOR THE GENOME-WIDE IDENTIFICATION OF AP2 SUPERFAMILY TRANSCRIPTION FACTORS IN PEARL MILLET." International Journal of Agriculture Sciences 14, no. 6 (2022):11391-11396.

Copyright : © 2022, A. ANJANI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The APETALA2/ethylene-responsive element binding factor (AP2/EREB) superfamily is one of the largest transcription factor families in plant kingdom which play a predominant role in plant growth processes and are involved in different biotic and abiotic stress responses. A detailed and comprehensive in silico analysis was performed to identify the AP2/ERF transcription factors in pearlmillet which identified 99 AP2/ ERF TFs classified into 19 AP2 family, 62 ERF subfamily, 15 DREB subfamily, 2 RAV family TFs and a soloist. Phylogenetic analysis was performed with the predicted protein sequences and conserved motifs were analysed. Seventy percent AP2 /ERF superfamily genes were found to be localised in nucleus and all of them were mapped onto the seven chromosomes. Physico-chemical parameters were computed and found that thirteen transcription factor proteins were stable. Fold Index was used and found that six transcription factors had no disordered regions and were folded completely. PMERF57 has good stability index and no disordered regions. These identified putative genes could be explored for further analysis

References

1. Sehgal D., Rajaram V., Armstead I.P., Vadez V., Yadav Y.P., Hash C.T. and Yadav R.S. (2012) BMC Plant Biology, 12(1), 9.
2. Vadez V., Hash T., Bidinger F. and Kholova J. (2012) Frontiers in Physiology, 3(386).
3. Singh P., Boote K.J., Kadiyala M.D.M., Nedumaran S., Gupta S.K., Srinivas K. and Bantilan M.C.S. (2017) Science of the Total Environment, 601-602,1226-37.
4. Wang W., Vinocur B. and Altman A. (2003) Planta, 218, 1-14.
5. Wang H., Wang H., Shao H. and Tang X. (2016) Frontiers in Plant Sciences, 7, 67.
6. Gong Z., Xiong L., Shi H., Yang S., Herrera-Estrella L.R., Xu G., Chao D.Y., Li J., Wang P.Y. and Qin F. (2020) Science China Life Sciences, 63(5), 635-74.
7. Kizis D., Lumbreras V. and Pages M. (2001) FEBS Letters, 498, 187-189.
8. Yamaguchi-Shinozaki K. and Shinozaki K. (2006) Annual Review of Plant Biology, 57, 781-803.
9. Jofuku K.D., Den Boer B.G., Van Montagu M. and Okamuro, J.K. (1994) The Plant Cell, 6(9), 1211-1225.
10. Lata C., Yadav A. and Prasad M. (2011) In: Shanker A. and Venkateshwarulu B. (eds) Abiotic Stress Response in Plants, INTECH Open Access Publishers, 269-296.
11. Mizoi J., Shinozaki K. and Yamaguchi-Shinozaki K. (2012) Biochimica et Biophysica Acta, 1819, 86-96.
12. Sakuma Y., Liu Q., Dubouzet J.G., Abe H., Shinozaki K. and Yamaguchi-Shinozaki K. (2002) Biochemical and biophysical research communications, 290(3), 998-1009.
13. Lata C. and Prasad M. (2011) Journal of experimental botany, 62, 4731-4748.
14. Dong L., Cheng Y., Wu, J., Cheng Q., Li W., Fan S., Jiang L., Xu Z., Kong F., Zhang D. and Xu P. (2015) Journal of experimental botany, 66(9), 2635-2647.
15. El Ouakfaoui S., Schnell J., Abdeen A., Colville A., Labbe H., Han S., Baum B., Laberge S. and Miki B. (2010) Plant Molecular Biology, 74(4-5), 313-26.
16. Je B.I., Piao H.L., Park S.J., Park S.H., Kim C.M., Xuan Y.H., Park S.H., Huang J., Do Choi Y. and An G. (2010) Plant Cell, 2(6), 1777-91.
17. Li C.W., Su R.C., Cheng C.P., Sanjaya Y.S.J., Hsieh T.H., Chao T.C. and Chan M.T. (2011) Plant Physiology, 156(1), 213-27.
18. Zhou M.L., Tang Y.X. and Wu Y.M. (2012) Current Bioinformatics, 7(3), 324-332.
19. Yan H.W., Hong L., Zhou Y.Q., Jiang H.Y., Zhu S.W., Fan, J. and Cheng B.J. (2013) Genetics and Molecular Res., 12(2), 2038-2055.
20. Nakano T., Suzuki K., Fujimura T. and Shinshi H. (2006) Plant physiology, 140(2), 411-432.
21. Zhuang J., Chen J.M., Yao Q.H., Xiong F., Sun C.C., Zhou X.R., Zhang J. and Xiong A.S. (2011) Mol. biology reports, 38(2), 745-753.
22. Lata C., Mishra A.K., Muthamilarasan M., Bonthala V.S., Khan Y. and Prasad M. (2014) PLoS One, 9(11), e113092.
23. Zhang G., Chen M., Chen X., Xu Z., Guan S., Li L.C., Li A., Guo J., Mao L. and Ma Y. (2008) Journal of experimental botany, 59(15), 4095-4107.
24. Xu W., Li F., Ling L. and Liu A. (2013) BMC genomics, 14(1), 1-15.
25. Li H., Wang Y., Wu M., Li L., Li C., Han Z., Yuan J., Chen C., Song W. and Wang C. (2017) Frontiers in plant science, 8, 946.
26. Zhuang J., Cai B., Peng R.H., Zhu B., Jin X.F., Xue Y., Gao F., Fu X.Y., Tian Y.S. Zhao W. and Qiao Y.S. (2008) Biochemical and biophysical research communications, 371(3), 468-474.
27. Licausi F., Giorgi F.M., Zenoni S., Osti F., Pezzotti M. and Perata P. (2010) BMC genomics, 11(1), 1-16.
28. Zhao J., Li W., Guo C. and Shu Y. (2018) Biotechnology & Biotechnological Equipment, 32(2), 303-308.
29. Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Ostell J., Pruitt K.D., Sayers E.W. (20158) Nucleic Acids Res., 46(D1), D41-D47.
30. Jin J.P., Tian F., Yang D.C., Meng Y.Q., Kong L., Luo J.C. and Gao G. (2017) Nucleic Acids Research, 45(D1), D1040-D1045.
31. Shennan Lu., et al. (2020) Nucleic Acids Research, 48(D1)265-8.
32. Madeira F., Pearce M. and Tivey A.R.N. (2022) Nucleic Acids Research, gkac240.
33. Sudhir Kumar., Glen Stecher., Michael Li., Christina Knyaz. and Koichiro Tamura. (2018) Molecular Biology and Evolution, 35, 1547-1549.
34. Timothy L., Bailey. and Charles Elkan. (1994) Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 28-36, AAAI Press, Menlo Park, California, 1994.
35. Voorrips R.E. (2002) The Journal of Heredity, 93(1), 77-78.
36. Yu C.S., Chen Y.C., Lu C.H. and Hwang J.K. (2006) Proteins: Structure, Function and Bioinformatics, 64, 643-651.
37. Yu C.S., Cheng C.W., Su W.C., Chang K.C., Huang S.W., Hwang J.K. and Lu C.H. (2014) PLoS ONE, 9(6), e99368.
38. De Castro E., Sigrist C.J.A., Gattiker A., Bulliard V., Langendijk-Genevaux P.S., Gasteiger E., Bairoch A. Hulo N. (2006) Nucleic Acids Research, W362-5.
39. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D. and Bairoch A. (2005) (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005), 571-607.
40. Jaime Prilusky., Clifford E. Felder., Tzviya Zeev-Ben-Mordehai., Edwin H. Rydberg., Orna Man., Jacques S. Beckmann., Israel Silman. and Joel L. (2005) Bioinformatics, 21(16), 3435-3438.
41. Ashok Kumar T. (2013) Wide Spectrum: Research Journal, 1(9), 15-19.
42. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R. and Schwede T. (2018) Nucleic Acids Research, 46, W296-W303.
43. Mathur S., Priyadarshini S.S., Singh V., Vashisht I., Jung K.H., Sharma R., Sharma M.K. (2020) 3 Biotech, 10(3), 139.
44. Zhang J., Liao J. (2022) BMC Genomics, 23, 125.
45. Rashid M., Guangyuan H., Guangxiao Y., Hussain J. and Xu Y. (2012) Evolutionary Bioinformatics, 8, EBO-S9369.