OVERVIEW OF CELLULAR AND MOLECULAR RESPONSES TO ABIOTIC STRESSES IN FRUIT CROPS

ANJU BAJPAI1*, YASHI BAJPAI2, M. MUTHUKUMAR3, LAXMI RASTOGI4
1ICAR-Central Institute for Subtropical Horticulture, Lucknow, 226101, Uttar Pradesh, India
2ICAR-Central Institute for Subtropical Horticulture, Lucknow, 226101, Uttar Pradesh, India
3ICAR-Central Institute for Subtropical Horticulture, Lucknow, 226101, Uttar Pradesh, India
4ICAR-Central Institute for Subtropical Horticulture, Lucknow, 226101, Uttar Pradesh, India
* Corresponding Author : anju.bajpai@gmail.com

Received : 02-04-2019     Accepted : 27-04-2019     Published : 30-04-2019
Volume : 11     Issue : 8       Pages : 8286 - 8289
Int J Agr Sci 11.8 (2019):8286-8289

Keywords : Abiotic Stress, Adaptive, Cellular and Molecular Response, ROS, Trehalose
Academic Editor : Anindita Paul
Conflict of Interest : None declared
Acknowledgements/Funding : Authors are thankful to ICAR-Central Institute for Subtropical Horticulture, Lucknow, 226101, Uttar Pradesh, India
Author Contribution : All authors equally contributed

Cite - MLA : BAJPAI, ANJU, et al "OVERVIEW OF CELLULAR AND MOLECULAR RESPONSES TO ABIOTIC STRESSES IN FRUIT CROPS." International Journal of Agriculture Sciences 11.8 (2019):8286-8289.

Cite - APA : BAJPAI, ANJU, BAJPAI, YASHI, MUTHUKUMAR, M., RASTOGI, LAXMI (2019). OVERVIEW OF CELLULAR AND MOLECULAR RESPONSES TO ABIOTIC STRESSES IN FRUIT CROPS. International Journal of Agriculture Sciences, 11 (8), 8286-8289.

Cite - Chicago : BAJPAI, ANJU, YASHI BAJPAI, M. MUTHUKUMAR, and LAXMI RASTOGI. "OVERVIEW OF CELLULAR AND MOLECULAR RESPONSES TO ABIOTIC STRESSES IN FRUIT CROPS." International Journal of Agriculture Sciences 11, no. 8 (2019):8286-8289.

Copyright : © 2019, ANJU BAJPAI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Abiotic stresses are major challenges affecting yield and production in plants including fruit trees. Drought, salinity, high temperature, frost are the major problems in tropical and subtropical ecosystems wherein major fruit orchards are concentrated. The review presents current scenario and understanding on the mechanism of abiotic stress responses in fruit crops. An overview of the physiological, biochemical and molecular changes that occur upon confronting stress is also presented. The details of the genes involved in stress response, native adaptation mechanism in natural ecosystems are also highlighted. Several abiotic stress pathways, trehalose biosynthesis genes, signal perception and transduction mechanisms are described. Insights into biochemistry of ROS, their production sites, antioxidant defence systems working in concert to control the cascades of uncontrolled oxidation to protect from oxidative damage are also covered. Opportunities and scope for stress breeding in fruits to re-establish homeostasis in stressful environments can be key to changing climate conditions.

References

1. Abouzaid E., El-Sayed N., Mohamed E.A., Youssef M., et. al. (2016) Tropical Plant Biology 9, 73-81.
2. Aharon R., Shahak Y., Wininger S., Bendov R., Kapulnik Y.,Galili G., et. al. (2003) The Plant Cell 15, 439-447.
3. Apel K., and Hirt H. (2004) Ann. Rev. of Pl. Bio. 55, 373-399.
4. Arbona V. and Gómez-Cadenas A. (2008) Jour. of Pl. Gr. Reg. 2, 241-250.
5. Ashraf M., (2010) Biotech. Adv. 28, 169-183.
6. Ashraf M., and Foolad M. R. (2007) Envir. and Exper. Bot. 59, 206-216.
7. Bajpai A., Manoharan M., Bajpai Y., Anand S., Das A., Ahmad I., et.al (2017) Green Farming 8, 1076-1080.
8. Bray E.A., Serres B.J., Weretilnyk E., Gruissem W., Buchannan B., Jones R., et. al. (2000) Biochem. and Mol. Bio. Pl. 1158-1249.
9. Chinnusamy V., Zhu J., Jian-Kang Z., et.al. (2010) Pl.Physiol.126,52-61.
10. De Ronde, J.A.,Cress, W. A.,Krüger, G.H.J., Strasser, R. J., Staden, J. V., et. al.(2004). Pl. Physiol. 161, 1211-1224.
11. Edreva A., Velikova V., Tsonev T., et. al. (2008) Gen. and Pl.Physiol. 34, 67-78.
12. Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S.M.A., et.al (2009) Sust. Agri. 29,185-212.
13. Grazia Annunziata Maria, Filomena, Ciarmiello Loredana, Pasqualina, Woodrow, Dellâ Aversana Emilia, Carillo Petronia (2019) Frontiers in Plant Science 10, doi.org/10.3389/fpls.2019.00230
14. Hao, W., Arora, R., Yadav, A, K., Joshee, N., et. al. (2008). Hort.Sci. 44(5),1258-1266.
15. Horváth E., Pál M., Szalai G., Páldi E., Janda T., et.al. (2007) Biol.Plant. 51, 480-487.
16. Hossain Z., López-Climent M. F., Arbona V., Pérez-Clemente R. M., Gómez-Cadenas A., et.al. (2009) Jour. of Pl. Physiol. 166, 1391-1404.
17. Houghton R.A., and Hackler J.L. (2001) Global Change Biology 5,481-492.
18. Jang I, C., SJ Oh.,Seo J, S., Choi W, B., Song S, I., CH k., et.al. (2003) Pl. Physiol. 131, 516-524.
19. Jaspers P., and Kangasjärvi J. (2010) Pl.Physiol.138, 405-413.
20. Javot H., Lauvergeat V., Santoni V., Martin Laurent F., Güclü J., Vinh J. Heyes J., Franck K.I., Schäffner A.R., Bouchez D., Maurel C., et. al. (2003) Plant Cell 15, 509-522.
21. Karim S., et. al. (2007) Pl. Mol.Biol.64,371-86.
22. Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., et. al. (1999) Nat. Biotech. 17,287-292.
23. Kasuga M., Miura S., Shinozaki K., Yamaguchi-Shinozaki K., et. al. (2004) Pl. Cell Physiol. 45,346-350.
24. Khan T. A., Mazid M; Mohammad F., et. al. (2011) Journ. of Stress Physiol.and Biochem.7,76-98.
25. Kumar R., and Kumar K. K. (2007) Ind. Hort. 52, 22-24.
26. Lemieux B. (1996) Tr. in Pl. Sci. 1,312- 318.
27. Liu J. H., and Moriguchi T., (2007) Biol.Plant.51, 530-532.
28. Lu., Lu C.C., Lee K.W., Chen., Huang L., HoS L., Liu H.J., Hsing Y.I., Yu S.M., et. al. (2007) Plant Cell 19, 2484-2499.
29. Mittler R. (2002) Trends Pl. Sci. 7,405-410.
30. Miura K. and Furumoto T. (2013) Mol.Sci. 14, 5312-5337.
31. Moller I. M., Jensen P. E., Hansson A., et. al. (2007) Ann. Rev. of Plant Biotech.58, 459-481.
32. Molinari H. B. C., Marur C. J., Daros E., De Campos M. K. F., De Carvalho J. F. R. P., Filho J. C. B., Pereira L. F. P. Vieira L. G. E., et. al. (2007) PhysiologiaPlantarum 130,218-229.
33. Murmu K, Murmu S, Kundu CK, Bera PS. (2017). Inter J Current Microbio Appl. Sci. 6,901-913.doi,10.20546/ijcmas.2017.609.109.
34. Neta-Sharir I., Isaacson T., Lurie S., Weiss D., et. al. (2005) Pl. Cell17,1829-1838.
35. Porcel R., Azcón R., Ruiz-Lozano J.M., et. al. (2006) Physiol. and Mol.Pl.Path. 65, 211-221.
36. Shen J., Xiao Q., Qiu H., Chen C., Chen H., et. al. (2016) Sci. Rep. 6, 32005.
37. Shigeoka S., Ishikawa T., Tamoi M., Miyagawa Y., Takeda T., Yabuta Y., Yoshimura K., et. al. (2002) Exper. Bot. 53, 1305-1319.
38. Shukla P.S., Agarwal P.K., Jha B., et. al. (2006) Pl. Gr.Reg.31,195-206.
39. Su T., and Wu R. (2004) Pl. Sci.166, 941-948.
40. Umezawa T., Fujita M., Fujita Y., Yamaguchi-Shinozaki K., Shinozaki K., et. al. (2006) Cur. Op. in Biotech. 17, 113-122.
41. Vinocur B., and Altman A. (2005) Cur. Op. in Biotech. 16,123-132.
42. Wang N., Guo T., Wang P., Sun X., Shao Y., Liang B., et. al. (2017) Sci. Hort. 221,23-32.
43. Yamaguchi-Shinozaki K., and Shinozaki Y. (2005) Tr. in Pl. Sci. 10, 88-94.
44. Yua S., Liu W. J., Zhang N. H., Wang M. B., Liang H. G., Lin H. H., et. al. (2005) Pl. Physiol. 125,464-473.