MOLECULAR DOCKING OF ALKALOID COMPOUND SA2014 FROM MARINE SPONGES Cinachyrella anomala TOWARDS P53 PROTEIN

AWIK PUJI DYAH NURHAYATI1*, MARDI SANTOSO2, EDWIN SETIAWAN3, FITRI LIANINGSIH4
1Biology Departmaent, Faculty of Mathematic and Natural Science, Institut Teknologi Sepuluh Nopember Surabaya 60111, Indonesia
2Chemistry Department, Faculty of Mathematic and Natural Science, Institut Teknologi Sepuluh Nopember Surabaya 60111, Indonesia
3Biology Departmaent, Faculty of Mathematic and Natural Science, Institut Teknologi Sepuluh Nopember Surabaya 60111, Indonesia
4Alumni of Biology Departmaent, Faculty of Mathematic and Natural Science, Institut Teknologi Sepuluh Nopember Surabaya 60111, Indonesia
* Corresponding Author : awik@bio.its.ac.id

Received : 03-05-2017     Accepted : 26-08-2017     Published : 30-08-2017
Volume : 8     Issue : 1       Pages : 247 - 249
Int J Drug Discov 8.1 (2017):247-249

Keywords : Cinachyrella anomala, alkaloid SA2014, docking molecular, p53 protein
Conflict of Interest : None declared
Acknowledgements/Funding : APD acknowledge Dr. Hari Purnomo from The Faculty of Pharmacy, Gajah Mada University, who assisted on the molecular cocking process
Author Contribution : All author equally contributed

Cite - MLA : NURHAYATI, AWIK PUJI DYAH, et al "MOLECULAR DOCKING OF ALKALOID COMPOUND SA2014 FROM MARINE SPONGES Cinachyrella anomala TOWARDS P53 PROTEIN." International Journal of Drug Discovery 8.1 (2017):247-249.

Cite - APA : NURHAYATI, AWIK PUJI DYAH, SANTOSO, MARDI, SETIAWAN, EDWIN, LIANINGSIH, FITRI (2017). MOLECULAR DOCKING OF ALKALOID COMPOUND SA2014 FROM MARINE SPONGES Cinachyrella anomala TOWARDS P53 PROTEIN. International Journal of Drug Discovery, 8 (1), 247-249.

Cite - Chicago : NURHAYATI, AWIK PUJI DYAH, MARDI SANTOSO, EDWIN SETIAWAN, and FITRI LIANINGSIH. "MOLECULAR DOCKING OF ALKALOID COMPOUND SA2014 FROM MARINE SPONGES Cinachyrella anomala TOWARDS P53 PROTEIN." International Journal of Drug Discovery 8, no. 1 (2017):247-249.

Copyright : © 2017, AWIK PUJI DYAH NURHAYATI, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

p53 is a protein that induces apoptosis when DNA damage occurs. A mutated p53 protein involves in more than 50% of human cancers and possesses a role in breast cancer formation. Investigation for finding potential candidates anticancer drug that causes minimal side effects are generally obtained from nature, and sea sponges are currently explored. The purpose of this study was to determine a docking score and amino acids that play a role in an activity of alkaloid compounds from selected sponges Cinachyrella anomala SA2014 against protein p53. SA2014 compound has the ability as anticancer compounds against breast cancer T47D through the interaction of the amino acid leucine and phenylalanine. Leucine plays a role in the binding of p53 with SA2014 alkaloid compound that affected a resistance of cell cycle at G1 phase / S and triggered apoptosis. Furthermore, Phenylalanine stabilized p53 tetrameric structure through hydrogen bonds.

References

1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K. and Walter P. (2008) Molecular Biology of the Cell fifth edition. Oxford: Garland Science.
2. Syaifudin M. (2010) “Perubahan Molekuler Gen Penekan Tumor p53 Akibat Pajanan Radiasi Pengion” Seminar Nasional VI SDM Teknologi Nuklir.
3. Lane D.P. and Crawford L.V. (1979) Nature, 278, 261-263.
4. Agarwal M. L., Agarwal A., Taylor W.R. and Stark G.R. (1995) Proc Natl Acad Sci., (92), 8493-8497.
5. Ling B. and Wei Z.G. (2006) Journal of Cancer Molecules, 2(4), 141-153.
6. Olivier M., Langerod A. and Carrieri P. (2006) Clin Cancer res., 12, 1157-1167.
7. Sjogren S., Inganas M. and Norberg T. (1996) Journal of the National Cancer Institute, 88, 173-182
8. Hanahan D. (2011) Cell, 144, 646–674.
9. Solomon H. (2011) J. Pathol., 225, 475–478.
10. Walerych D., Marco N., Collavin L. and Giannino D.S. (2012) Carcinogenesis, (00), 1-11.
11. Maxwell P. (2001) The Lancet Oncology, 2(9), 533-543.
12. Williams D.E. and Andersen R.J. (2006) “Coral reefs toclinical trials: bio prospecting for drugs from the sea. report on international seminar and workshop on marine biodiversity and their potential fordeveloping bio-pharmaceutical industry in Indonesia”. Research Center for Marine and Fisheries Product Processing and Biotechnology Book 2”. Jakarta 80–92.
13. Iwamaru A., Iwado E. and Kondo S. (2007) Molecular Cancer Therapeutic, 6(1), 184-192.
14. Jha R. K. and Zi- Rong (2004) Mar. Drugs, 2, 123-146.
15. Cardenas P. (2015) World Porifera Database [Online] Available: http://www. marienspecies.org.
16. Lyskov S. and Gray J.J. (2008) Nucleic Acids Res., 36, 233-238.
17. Purnomo H. (2011) “Kimia Komputasi: Molecular Docking Plants Penambatan Molekul Plants [Protein-Ligand-Ant-System] (Ilmu Semut)” Yogyakarta: Pustaka Pelajar
18. Jain A. N. and Nicholls A. (2008) Journal Compt. Aidded Mol., 22, 133-139.
19. Moittesier N., Englebienne P. L. and Corbeil. (2008) Journal Pharmacology, 153, S7-S26.
20. Leao M., Clara P., Alessandra B., Yari C., Ana M.P., Neuza M., Andreia P., Miguel X., Fernandes, Madalena P., Alberto I., Luci´lia S. and Emilia S. (2013) Biochemical Pharmacology, 85, 1234–1245.
21. Nomura T., Kamada R., Ito I., Sakamoto K., Chuman Y., Ishimori K., Shimohigashi Y. and Sakaguchi K. (2011) Article Biopolymers, 95(6), 410-419.
22. Filhiol T. M. (2012) The Effects of Leucine on Mitochondrial Biogenesis and Cell Cycle in A-375 Melanoma Cells in Thesis. University of Tennessee. KnoxvilleTrace.
23. Sun X. and Zemel M.B. (2009) Nutri Metab., 6, 26.
24. Sheen J. H., Zoncu R., Kim D. and Sabatini D.M. (2011) Cancer Cell, 19, 613-622.
25. Nurhayati A.P.D., Pratiwi R., Wahyuono, Istriyati, Fadlan and Syamsudin (2014) Journal of Advanced Botany and Zoology, 2(1), 1-4.