ELECTRICAL AND DIELECTRIC PROPERTIES OF ZIRCONIUM DOPED NICKEL-ZINC FERRITE

Mahindrakar Rohini1, Algude S.G.2, Birajdar D.S.3
1Department of Physics, S.C.S. College, Omerga, 413606, MS, India
2Department of Physics, S.C.S. College, Omerga, 413606, MS, India
3Department of Physics, S.C.S. College, Omerga, 413606, MS, India.

Received : -     Accepted : -     Published : 15-06-2010
Volume : 1     Issue : 1       Pages : 14 - 19
World Res J Appl Phys 1.1 (2010):14-19

Keywords : Ferrites, ceramic, electron hopping, d.c. electrical resistivity
Conflict of Interest : None declared

Cite - MLA : Mahindrakar Rohini, et al "ELECTRICAL AND DIELECTRIC PROPERTIES OF ZIRCONIUM DOPED NICKEL-ZINC FERRITE." World Research Journal of Applied Physics 1.1 (2010):14-19.

Cite - APA : Mahindrakar Rohini, Algude S.G. , Birajdar D.S. (2010). ELECTRICAL AND DIELECTRIC PROPERTIES OF ZIRCONIUM DOPED NICKEL-ZINC FERRITE. World Research Journal of Applied Physics, 1 (1), 14-19.

Cite - Chicago : Mahindrakar Rohini, Algude S.G. , and Birajdar D.S. "ELECTRICAL AND DIELECTRIC PROPERTIES OF ZIRCONIUM DOPED NICKEL-ZINC FERRITE." World Research Journal of Applied Physics 1, no. 1 (2010):14-19.

Copyright : © 2010, Mahindrakar Rohini, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Zirconium doped Nickel-Zinc ferrites of composition Ni0.7+xZn0.3ZrxFe2-2xO4 were prepared by standard double sintering ceramic technique. The single-phase cubic spinel structures of the samples were confirmed from X-ray diffraction patterns. Electrical properties namely DC-resistivity as a function of temperature were studied for ferrite samples. Dielectric properties such as dielectric constant (έ), dielectric loss (ε״) and loss tangent (tanδ) have been investigated at constant frequency with varying temperature.

References

[1] M. Sugimoto, J.Am.Soc. 82(2) (1999) 269  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Enlc Zhou ,Shifeng Yan. J. Magn. Magn. Mater. 292 (2005)304-309.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] O.F. Caltun et.al. J. Magn. Magn. Mater.242-245 (2002) 160.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] R.V. Mangalraja. Et.al. J. Magn. Magn. Mater.253 (2002) 56-64  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] M.Guyot, J. Magn. Magn. Mater.18(1990) 925.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] A.M.Abdeen , J. Magn. Magn. Mater.192(1999).  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] G.Ranga Mohan D.Ravinder et.al., Materials Letters 40(1999) 39-45  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] K.J.Standley “Oxide magnetic material” Clarendon press Oxford (1962).  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] P.S. Anil Kumar, Mater.Lett.27 (1996)293.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] A. Tataroglu, S. Altındal, M.M. Bulbul, Microelectron. Eng. 81(2005) 140.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] R.D. Gould, S.A. Awan, Thin Solid Films 469 (2003) 184.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] T. Ozaki, T. Ogasawara, T. Kosugi, T. Kamada, Physica B 263(1999) 333  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] M.M. Bulbul, Microelectronic Engineering 84 (2007) 124–128  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta Mate. Sci. Eng. B 116 (2005) 1–6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] R.D. Gould, Thin Solid Films 423 (2003) 267  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] K. Prabakar, S.K. Narayandass, D. Mangalaraj, Phys. Stat. Sol. 199 (3) (2003) 507  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] A.A. Sattar, S.A. Rahman, Phys. Stat. Sol. (a) 200 (2) (2003) 415  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] C. Fanggao, G.A. Saunders, E.F. Lambson, R.N. Hampton, J. Appl. Poly. Sci. 34 (1996) 425  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] C. Ye, Z. Ning, M. Shen, S. Cheng, Z. Gan, J. Appl. Phys 83 (11)(1998) 5978  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] R.D. Gould, S.A. Awan, Thin Solid Films 433 (2003) 309  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] M.S. Mattsson, G.A. Niklasson, K. Forsgren, A. Harsta, J. Appl.Phys. 85 (4) (1999) 2185.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus