IMMUNOPROTEOMICS APPROACH FOR FRAGMENT BASED VACCINE DESIGN FROM Coxsackie B virus

Gomase V.S.1*, Shyamkumar K.2
1Department of Bioinformatics, Padmashree Dr. D. Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, MS, India
2Department of Bioinformatics, Padmashree Dr. D. Y. Patil University, Plot No-50, Sector-15, CBD Belapur, Navi Mumbai, 400614, MS, India
* Corresponding Author : Mailvirusgene1@yahoo.co.in

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 1 - 3
Int J Mach Intell 1.1 (2009):1-3
DOI : http://dx.doi.org/10.9735/0975-2927.1.1.1-3

Keywords : Epitope, PSSM, SVM, MHC, Peptide vaccine
Conflict of Interest : None declared

Cite - MLA : Gomase V.S. and Shyamkumar K. "IMMUNOPROTEOMICS APPROACH FOR FRAGMENT BASED VACCINE DESIGN FROM Coxsackie B virus." International Journal of Machine Intelligence 1.1 (2009):1-3. http://dx.doi.org/10.9735/0975-2927.1.1.1-3

Cite - APA : Gomase V.S. , Shyamkumar K. (2009). IMMUNOPROTEOMICS APPROACH FOR FRAGMENT BASED VACCINE DESIGN FROM Coxsackie B virus. International Journal of Machine Intelligence, 1 (1), 1-3. http://dx.doi.org/10.9735/0975-2927.1.1.1-3

Cite - Chicago : Gomase V.S. and Shyamkumar K. "IMMUNOPROTEOMICS APPROACH FOR FRAGMENT BASED VACCINE DESIGN FROM Coxsackie B virus." International Journal of Machine Intelligence 1, no. 1 (2009):1-3. http://dx.doi.org/10.9735/0975-2927.1.1.1-3

Copyright : © 2009, Gomase V.S. and Shyamkumar K., Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Coxsackieviruses are non-enveloped viruses with linear single-stranded RNA. Group B coxsackieviruses were noted to cause a spastic paralysis due to focal muscle injury and degeneration of neuronal tissue. Peptide fragments of Coxsackievirus-B coat protein can be used to select nonamers for use in rational vaccine design and to increase the understanding of roles of the immune system in infectious diseases. Analysis shows MHC class II binding peptides of coat protein from Coxsackievirus-B are important determinant for protection of host form viral infection. In this assay we predicted the binding affinity of coat protein having 281 amino acids, which shows 273 nonamers. These peptides are from a set of aligned peptides known to bind to a given MHC molecule as the predictor of MHC-peptide binding. MHCII molecules bind peptides in similar yet different modes and alignments of MHCII-ligands were obtained to be consistent with the binding mode of the peptides to their MHC class, this means the increase in affinity of MHC binding peptides may result in enhancement of immunogenicity of coat protein nonamers. Binding ability prediction of antigen peptides to major histocompatibility complex (MHC) class I & II molecules is important in vaccine development from Coxsackievirus.

References

[1] Flint et. al. (2000) Principles of Virology 420-2, 664-83  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Fields Bernard N., David M. Knipe, Robert M. Chanock, Joseph L. Melnick, Bernard Roizman, Robert E. Shope (1985) Fields Virology. New York: Raven Press 739–794  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Kaplan M. H., Klein S. W., McPhee J., Harper R. G. (1983) Reviews of Infectious Diseases 5 (6): 1019–1032  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Gomase V.S. and Kale K.V. (2007) National Symposium on Genomics, Proteomics and Bioinformatics, Osmanabad, India  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Gomase V. S., Kale K.V., Jyotiraj A. and Vasanthi R. (2007) Medicinal Chemistry Research, 15(1/6), 160  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Gomase V.S., Kale K.V., Shyamkumar K. and Shankar S. (2008) ICETET 2008, IEEE Computer Society in IEEE Xplore, Los Alamitos, California, 629-634  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Reche P.A., Glutting J.P. and Reinherz E.L. (2002) Hum Immunol., 63(9), 701-709  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Buus S., Lauemøller S.L., Worning P., Kesmir C., Frimurer T., Corbet S., Fomsgaard A., Hilden J., Holm A., Brunak S. (2003) Tissue Antigens, 62 (5), 378-384  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Nielsen M., Lundegaard C., Worning P., Lauemøller S.L., Lamberth K., Buus S., Brunak S., Lund O. (2003) Protein Sci., 12 (5), 1007-1017  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Bhasin M. and Raghava G.P. (2005) Nucleic Acids Res., 33, W202-207  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Gomase V. S., Tandale J.P., Patil S. A. and Kale K.V. (2006) 14th International Conference on Advance Computing & Communication, ADCOM06, Published by IEEE Computer Society in IEEE Xplore USA, 614-615  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Gomase V.S., Kale K.V., Chikhale N.J., Changbhale S.S. (2007) Curr. Drug Discov. Technol., 4(2), 117-1215  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Gomase V.S., Waghmare S.B., Jadhav B.V., Kale K.V. (2009) Gene Therapy and Molecular Biology, 13, 11-15  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus