Production of Glutamic acid using whole and immobilised cells of Corynebacterium glutamicum

Prasad M. Patil1, Nikhil Gupta2, Hipal Gaudani3, Mayank Gupta4, Girish Gupta5, Vamsi Krishna K6, Soham Trivedi7, Megha Londhe8
1Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
2Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
3Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
4Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
5Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
6Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
7Department of Biotechnology, Padmashree Dr. D.Y. Patil University, Navi Mumbai, 400614, India
8Department of Biotechnology, Padmashree Dr. D. Y. Patil University, Pune, India

Received : -     Accepted : -     Published : 15-06-2009
Volume : 1     Issue : 1       Pages : 8 - 13
Int J Microbiol Res 1.1 (2009):8-13
DOI : http://dx.doi.org/10.9735/0975-5276.1.1.8-13

Conflict of Interest : None declared

Cite - MLA : Prasad M. Patil, et al "Production of Glutamic acid using whole and immobilised cells of Corynebacterium glutamicum." International Journal of Microbiology Research 1.1 (2009):8-13. http://dx.doi.org/10.9735/0975-5276.1.1.8-13

Cite - APA : Prasad M. Patil, Nikhil Gupta, Hipal Gaudani, Mayank Gupta, Girish Gupta, Vamsi Krishna K, Soham Trivedi, Megha Londhe (2009). Production of Glutamic acid using whole and immobilised cells of Corynebacterium glutamicum. International Journal of Microbiology Research, 1 (1), 8-13. http://dx.doi.org/10.9735/0975-5276.1.1.8-13

Cite - Chicago : Prasad M. Patil, Nikhil Gupta, Hipal Gaudani, Mayank Gupta, Girish Gupta, Vamsi Krishna K, Soham Trivedi, and Megha Londhe "Production of Glutamic acid using whole and immobilised cells of Corynebacterium glutamicum." International Journal of Microbiology Research 1, no. 1 (2009):8-13. http://dx.doi.org/10.9735/0975-5276.1.1.8-13

Copyright : © 2009, Prasad M. Patil, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

The strain of Corynebacterium glutamicum was tested on nutrient agar plate for its purity. This strain was further used for glutamic acid production under optimum growth conditions. Studies revealed that whole cells produce more glutamic acid compared to immobilized cells. It was also observed that among immobilized cells agarose produces more glutamic acid as compared to alginate. It was concluded that immobilized cells are more beneficial that whole cells as they are reusable and avoids chances of contamination hence cost effective.

References

[1] Peppler H. J. and Perlman (2004) microbial technology/2ed Vol 1, academic press, New York.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Takinami K., Yamada K., and Okada H. (1966) agric. Biol. Chem 30, 674  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Takinami K., Yamada K., and Okada H. (1967) agric. Biol. Chem 31, 223  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Ikeda K. (1908) J. Tokyo chem. Soc. 30, 820  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Kinoshita S., Udaka S., and Shimmo M. (1957) J. Gen. Appl. Microbial. 3, 193  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Tanaka K., Iwaski T. and Kinoshita S. (1960) J. Agric. Chem. Soc. Jpn. 34, 593  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Shiio I. Ostuka S. and Katsuya N. (1963) J. Biochem. (Tokyo) 53 , 333  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Breuer L. H., Pond W.G., Warner R.G. and Loosli J. K. (1964) J. Natr. 82,499  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Oishi K. (1967) J, Argic. Chem, Soc, Jpn 41 , R35  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Shibukawa M. , Kurima M. , Okabe S. and Osawa T. (1968) Hakko. To Taisha 17 , 61  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Izumi Y., Tani Y. and Ogato K. (1973) Biochem. Biophys. Acta 326, 485  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Kamiryo T., Parthasurathy S. and Numa S. (1976) Proc. Natl. Acad. Sci. U. S. A. 73, 386  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Mendel M. and Hinga A. (1976) J. Mol Biol, 53, 159  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Duncan C. H., Wilson, G. A. and Young, F. E. -, Gene 1, 153 (177)  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Chang S. and choen S. N. (1979) Molec, Gen. Genet., 168, 111  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Hinnen A., Hicks J.B. and Fink G.R. (1978) proc. NatI, Sci., USA, 75, 1929  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus