Active site binding interactions of β-carboline derivative for HIV reverse transcriptase, protease and integrase

Prabha Garg1*, Rajender Kumar2
1Computer Centre, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, India
2Computer Centre, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, India
* Corresponding Author : prabhagarg@niper.ac.in

Received : -     Accepted : -     Published : 21-12-2010
Volume : 2     Issue : 2       Pages : 51 - 55
Int J Drug Discov 2.2 (2010):51-55
DOI : http://dx.doi.org/10.9735/0975-4423.2.2.51-55

Keywords : β-carboline derivative, HIV, Reverse transcriptase, Integrase, Protease
Conflict of Interest : None declared

Cite - MLA : Prabha Garg and Rajender Kumar "Active site binding interactions of β-carboline derivative for HIV reverse transcriptase, protease and integrase." International Journal of Drug Discovery 2.2 (2010):51-55. http://dx.doi.org/10.9735/0975-4423.2.2.51-55

Cite - APA : Prabha Garg, Rajender Kumar (2010). Active site binding interactions of β-carboline derivative for HIV reverse transcriptase, protease and integrase. International Journal of Drug Discovery, 2 (2), 51-55. http://dx.doi.org/10.9735/0975-4423.2.2.51-55

Cite - Chicago : Prabha Garg and Rajender Kumar "Active site binding interactions of β-carboline derivative for HIV reverse transcriptase, protease and integrase." International Journal of Drug Discovery 2, no. 2 (2010):51-55. http://dx.doi.org/10.9735/0975-4423.2.2.51-55

Copyright : © 2010, Prabha Garg and Rajender Kumar, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Recently Anti-HIV activity of β-carboline derivatives is reported. The highly active compound 1-Formyl-beta-carboline-3-carboxylic acid methyl ester which has anti-HIV activity (IC50 = 2.9 μM) was docked into the active sites of HIV reverse transcriptase (RT), integrase (IN) and protease (PR). The compound was showing good binding energy score and binding interactions with RT as compared to PR and IN after comparison of docking results. The compound showed two H bonding interactions with Lys103 residue and good binding free energy score -8.63 Kcal/mol at temperature 298.15 K for HIV RT protein.

References

[1] Weissbrich B., Heinkelein M. and Jaassoy C. (2002) Adv. Virus Res, 58, 157-202.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] d’Angelo J., Mouscadet J. F., Desmaële D., Zouhiri, F. and Leh H. (2001) Pathol. Biol, 49(3), 237-46.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Andrake M. D. and Skalka A. M. (1996) J. Biol. Chem, 271(33), 19633-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Yu D., Morris-Natschke S. L. and Lee K. H. (2007) Med. Res. Rev, 27(1), 108- 32  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Ahmed N., Brahmbhatt K. G., Sabde S., Mitra D., Singh I. P. and Bhutani K. K. (2010) Bioorg. Med. Chem, 18(8), 2872-9  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Chauthe S. K., Bharate S. B., Sabde S., Mitra D., Bhutani K. K. and Singh I. P. (2010) Bioorg. Med. Chem, 18(5), 2029-36  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Kusurkar R. S., Alkobati N. A. H., Gokule A. S. and Puranik V. G. (2008) Tetrahedron, 64(8), 1654-62  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Liu J., Cui G., Zhao M., Cui C., Ju J. and Peng S. (2007) Bioorg. Med. Chem, 15(24), 7773-88.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Liu J., Wu G., Cui G., Wang W.-X., Zhao M., Wang C., Zhang Z. and Peng S. (2007) Bioorg. Med. Chem, 15(17), 5672-93  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Brahmbhatt K. G., Ahmed N., Sabde S., Mitra D., Singh I.P. and Bhutani K. K. (2010) Bioorg. Med. Chem. Lett, 20(15), 4416-19.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Kroemer RT. (2003) Biochem Soc Trans, (Pt 5), 980-4.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Ferrara P., Gohlke H., Price D. J., Klebe G. and Brooks C. L 3rd. (2004) J. Med. Chem, 47(12), 3032-47.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Chang CE. and Gilson M. K. (2004) J. Am. Chem. Soc, 126(40), 13156-64  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Gilson M. K. and Zhou HX. (2007) Annu. Rev. Biophys. Biomol. Struct, 36, 21- 42  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Rodinger T. and Pomès R. (2005) Curr. Opin. Struct. Biol, 15(2), 164-70  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Morris G. M., Goodsell D. S., Halliday R. S., Huey R., Hart W. E., Belew R. K. and Olson A. J. (1998) J. Comput. Chem, 19, 1639-62.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Goldgur Y., Craigie R., Cohen G. H., Fujiwara T., Yoshinaga T., Fujishita T., Sugimoto H., Endo T., Murai H. and Davies D. R. (1999) Proc. Natl. Acad. Sci. U.S.A., 96, 13040.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[18] Chen Z., Li Y., Chen E., Hall D. L., Darke P. L., Culberson C., Shafer J. A. and Kuo L. C. (1994) J. Biol. Chem, 269-42, 26344-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[19] SYBYL7.1 Tripos Inc., St. Louis, MO, 63144, USA  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[20] Gasteiger J. and Marsili M. (1980) Tetrahedron, 36, 3219-28.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[21] Powell M. J. D. (1977) Math. Program, 12, 241.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[22] Pata J. D., Stirtan W. G., Goldstein S. W. and Steitz T. A. (2004) Proc. Natl. Acad. Sci. U.S.A., 101(29), 10548-53  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[23] Chen H. F., Yao X. J., Li Q., Yuan S. G., Panaye A., Doucet J. P. and Fan B. T. (2003) SAR QSAR Environ. Res,14(5- 6), 455-74  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[24] Barreiro G., Guimaraes C. R. W., Tubert-Brohman I., Lyons T. M., Tirado-Rives J. and Jorgensen W. L. (2007) J. Chem. Inf. Model, 47(6), 2416-28  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[25] Craigie R. (2001) J. Biol. Chem, 276(26), 23213-6.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[26] Dayam R. and Neamati N. (2004) Bioorg. Med. Chem, 12(24), 6371-81.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[27] Engelman A. and Craigie R. (1992) J. Virol, 66(11), 6361-9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[28] Gait M. J. and Karn J. (1995) Trends Biotechnol, 13(10), 430-8.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[29] Goldgur Y., Dyda F., Hickman A. B., Jenkins T. M., Craigie R. and Davies D. R. (1998) Proc. Natl. Acad. Sci. U.S.A., 95, 9150  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[30] Gupta P., Kumar R., Garg P. and Singh I.P. (2010) Bioorg. Med. Chem. Lett, 20(15), 4427-31  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[31] Leavitt A. D., Shiue L. and Varmus H. E. (1993) J. Biol. Chem, 268(3), 2113- 9.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[32] Sotriffer C. A., Ni H. and McCammon J. A. (2000) J. Med. Chem., 43(22), 4109-17.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus