Callus induction studies in Tridax procumbens L.

Minal Wani1*, Snehal Pande2, Nitin More3
1Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Akurdi, Pune, Maharashtra
2Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Akurdi, Pune, Maharashtra
3Department of Biotechnology, New Arts, Commerce and Science College, Wardha
* Corresponding Author : minal1412@gmail.com

Received : -     Accepted : -     Published : 15-06-2010
Volume : 2     Issue : 1       Pages : 11 - 14
Int J Biotechnol Appl 2.1 (2010):11-14
DOI : http://dx.doi.org/10.9735/0975-2943.2.1.11-14

Conflict of Interest : None declared

Cite - MLA : Minal Wani, et al "Callus induction studies in Tridax procumbens L.." International Journal of Biotechnology Applications 2.1 (2010):11-14. http://dx.doi.org/10.9735/0975-2943.2.1.11-14

Cite - APA : Minal Wani, Snehal Pande, Nitin More (2010). Callus induction studies in Tridax procumbens L.. International Journal of Biotechnology Applications, 2 (1), 11-14. http://dx.doi.org/10.9735/0975-2943.2.1.11-14

Cite - Chicago : Minal Wani, Snehal Pande, and Nitin More "Callus induction studies in Tridax procumbens L.." International Journal of Biotechnology Applications 2, no. 1 (2010):11-14. http://dx.doi.org/10.9735/0975-2943.2.1.11-14

Copyright : © 2010, Minal Wani, et al, Published by Bioinfo Publications. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

Tridax procumbens is a common weed plant belonging to the family Asteraceae. The leaf juice has antiseptic, insecticidal and parasiticidal properties. The present work is based on developing a protocol for the callus induction in Tridax procumbens from various explants like leaf, internodes and shoot apical buds. The sterilized explants were inoculated in MS media containing various combination of auxins such as 2, 4, dichlorophenoxy acetic acid (2, 4-D) and naphthalene acetic acid (NAA) and cytokinins such as kinetin and 6 benzyl amino purine (BAP). Leaf and apical bud explants showed early and profuse callus induction whereas internodal explants showed comparatively delayed but profuse callus induction. Leaf and apical bud explants showed maximum response in terms of callus by using MS media with the combination 2, 4-D 0.5mg/lit and BAP 0.5mg/lit which was followed by 2, 4-D 0.5mg/lit and KIN 0.5mg/lit, 2, 4 -D 0.5mg/lit and BAP+KIN 0.5 mg/lit, NAA 0.5mg/lit and BAP 0.5mg/lit, NAA 2mg/lit and BAP 0.5mg/lit respectively. Whereas internodal explants showed maximum callus induction by using a hormonal concentration of 2mg/lit 2,4, D and 0.5mg/lit BAP. In vitro generated callus can be used as a source for the isolation of secondary metabolites from Tridax plant.

References

[1] Ali M., Ravinder E. and Ramachandran R. (2001) Fitoterapia, 72, 313-315  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[2] Anitha S. and Kumari B.D.R. (2006) Afr. J. Biotechnology, 5, 659-661  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[3] Bhagwat D. A., Killedar S. G. and Adnaik R. S. (2008) Int. J. Green Pharm., 2, 126- 128.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[4] Biswas A., Roy M., Miah M. A. B. and Bhadra S. K. (2007) Plant Tissue Cult. Biotechnol., 17, 59-64  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[5] Glover P. E., Stewart J., Gwynne Masai M. D. (1966) East Afr. Agri.Forest J., 32, 200-207  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[6] Hasan M.F., Das R., Rahman M.S., Rashid M.H., Hossain M.S. and Rahman M. (2008) Int. J. Sustain. Crop Prod., 3(6), 6-10  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[7] Kirillova, N.V., Smirnova M.G. and Komov V. P. (2001) Prikl. Biokhim. Mikrobiol., 37, 181-185  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[8] Maheshwari P., Songara B., Kumar S., Jain P., Srivastava K. and Kumar A. (2007) Biotechnol. J., 2, 1026-1032  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[9] Murashige T. and Skoog F. (1962) Plant Physiol., 15, 473-497  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[10] Nagendra Prasad K., Shiva Prasad M., Shivamurthy G.R. and Aradya S.M. (2006) Indian J. of Bioteh., 5,107-111  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[11] Neelofar Jabeen, Shawl A.S., Dar G.H., Arif Jan and Phalisteen Sultan (2006) Biotechnology, 5(3), 287-291  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[12] Pathak A.K., Saraf S. and Dixit V.K. (1991) Fitoterapia, 62, 307-313  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[13] Ravikumar V., Kanchi Subramanian, Shivashangari and Devaki T. (2005) Molecular and Cellular Biochemistry, 269, 131-136  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[14] Salma U., Rahman M. S. M., Islam S., Haque N., Jubair T. A., Haque A. K. M. F. and Mukti I. J. (2008) Pak. J. Biol. Sci., 11 (12), 1638-1641  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[15] Saraf S, A.K. Pathak and V.K. Dixit. (1991) Fitoterapia. 62: 495-498.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[16] Uei-Chern Chen, Fu-Shin Chueh, Chi-Ni Hsia, Mau-Shing Yeh and Hsin-Sheng Tsay. (2005) Crop, Environment & Bioinformatics, 2, 39-49.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus  

[17] Uei-Chern Chen, Fu-Shin Chueh, Chi-Ni Hsia, Mau-Shing Yeh and Hsin-Sheng Tsay. (2005) Crop, Environment & Bioinformatics, 2, 39-49.  
» CrossRef   » Google Scholar   » PubMed   » DOAJ   » CAS   » Scopus